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Abstract

This paper studies difference-in-differences (DD) research designs where all observations
receive a continuous treatment (or dose) in response to an aggregate policy, so there is no group
that is ex post unexposed. This setting stands in contrast to the recent literature re-examining
DD estimators which typically requires that a subset of observations never receive the treat-
ment to identify the Average Treatment Effect on the Treated (ATT). We develop a framework
to estimate the treatment effect when the dose takes effect only after a cutoff value, the Mini-
mum Effective Dose (MED), and introduce the average treatment effect on the effectively treated
(ATET) as our target estimand. We propose a sample splitting estimator of the ATET and MED
under non-parametric assumptions on the dose response function. First, in a hold-out sample,
we borrow methods from the pharmacological literature to estimate the MED in a model selec-
tion step. This is then used to estimate the ATET with the remaining observations in a second
step. This estimator is asymptotically conservative: it does not erroneously identify any treated
units as untreated in the limit even if the MED is on the boundary of the parameter space, but
as a result, it provides an attenuated estimate of the ATET. We use the bootstrap procedure in
Efron (2014) to construct standard errors for the ATET estimate that reflect uncertainty over the
value of the MED. Our simulations suggest that this estimator performs well in finite samples.
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1 Introduction

Without additional assumptions, it is generally impossible to infer the effects of a treatment by

comparing participants to non-participants or comparing the participants over time. For valid

inference, unit comparisons must restrict selection into treatment, which is generally difficult to

justify in the absence of an instrument. On the other hand, time comparisons (e.g. interrupted

time series methods) cannot allow for contemporaneous trends. Difference-in-differences (DD)

research designs combine these two estimators to infer causal effects by subtracting the change in

outcomes over time for non-participants from the change for participants. This is valid whenever

the average change in outcomes for participants in the absence of treatment (a counterfactual

moment) is equal to the average change in outcomes for those who go untreated, known as a

Parallel Trends assumption (PTA). Panel data thus enables identification of a causal effect without

ruling out selection into treatment levels or contemporaneous trends.

A common extension in practice admits a continuously distributed treatment (or dose) variable,

where all units are exposed to some level of the dose Di ≥ 0. One motivation behind these research

designs is an aggregate policy where the researcher hypothesizes that units face heterogeneous

exposure according to some dose variable. A prominent example is Card (1992) which measures

a state’s exposure to a higher federal minimum wage by the share of teenage workers who fall

below the new legislated minimum. The estimating equation follows via analogy to binary DD

Yi,t = αi + θt + β ·DiPt + εi,t (1)

where Yi,t is some outcome of interest, αi and θt are unit and time fixed-effects respectively, Pt

indicates the periods that units are exposed, and εit is some error term. The main coefficient

of interest in the Two-Way Fixed-Effects (TWFE) regression above is β, which represents an ag-

gregation of the “effect” of the continuous treatment. Researchers typically interpret this as the

weighted average dose response function (DRF), in line with the “average derivative” interpreta-

tion of regression coefficients (Yitzhaki, 1996; Angrist and Pischke, 2009).

Recently Callaway et al. (2024), hereafter referred to as CGS, decompose β and derive sufficient

assumptions to identify well-defined causal parameters. Whenever researchers have access to

“pure control” units, or observations unexposed to the treatment with dose Di = 0, only minor

modifications to the parallel trends assumption allows identification of the Average Treatment
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Effect on the Treated (ATT) parameter, defined for each positive dose level. But what if researchers

do not have access to a pure control group? We focus on these cases and study inference in the

absence of well-defined controls.

To understand the data constraints that researchers face, we conduct a metastudy of all papers

published in the American Economic Review (AER) between 2000 and 2018. Out of the 44 papers

estimating a continuous treatment DD model, 31 estimate a full dose regression like (1). Without

pure control units, this estimator relies exclusively on comparisons across dose levels, aggregating

them into an estimate of the overall dose response. However, the standard parallel trends assump-

tion does not identify the ATT nor the average effect of marginal increases in the dose (Average

Causal Response). This is because comparisons across treated units at different doses must addi-

tionally restrict selection into treatment levels, which is not typical in standard DD. In the case of

a continuous dose, the least squares estimator of β converges to a weighted average of differences

between adjacent ATT estimates across the dose distribution, which only reveals a causal response

under restrictions on counterfactual treatment effect heterogeneity (strong parallel trends).

If we are not willing to make strong assumptions, what is left to do? The remaining 13 papers di-

chotomize the dose variable (at some researcher-specified cutoff value) and estimate a traditional

difference-in-differences model. This approach bins all “intensely” exposed units together and

compares them with everyone else; the hope is that even if some control units receive a small dose,

as long as the effect is monotonic this will reveal an attenuated version of the average treatment

effect for units classified as treated. We show that this estimator does not escape the problems in-

herent in comparing treated units at different doses and, without stronger assumptions, estimates

a sum of treatment and selection effects. At its core, this paper is concerned with identifying a set

of plausible and testable assumptions that allow for inference using an estimator of this type.

We begin by constructing a potential outcomes framework for applications where all units are

treated at a certain time period and consider a counterfactual where all units are instead untreated,

which allows us to formalize precise definitions of treatment effect parameters of interest. Infer-

ence in these settings is particularly difficult, beyond the usual Fundamental Problem of Causal

Inference (Imbens and Rubin, 2015) that treated and untreated outcomes cannot be observed for

the same unit at the same time. In this case, in every period we observe either a treated or an

untreated outcome for all units, so that contemporaneous treatment-control comparisons cannot

be made. This issue is well-known in macroeconomics (Rambachan and Shephard, 2019), which
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exploits the timing of exogenous shocks for identification. Instead, we focus on the use of contem-

poraneous comparisons, which remains the dominant paradigm in applied microeconometrics.

The central assumption in our approach is that certain groups experience outcomes identical to

a world in which the policy is not passed. To be precise, borrowing from the pharmacological

literature, we assume that there exists a “Minimum Effective Dose” (MED), where units with

a dose below the MED experience an outcome indistinguishable from one in which they were

untreated (Ruberg (1989) defines this formally). As a result, any unit receiving a dose below the

MED can be used as a valid control in a standard difference-in-differences design. A natural

treatment group is this setting is all units that were impacted by the policy; under the assumption

of an MED, this group consists of all units receiving a dose above the MED. We define the average

treatment effect across this group as the average treatment effect on the effectively treated (ATET),

which is our target estimand.

If we knew ex ante what the MED was, a design in which the researcher dichotomized at this value

would recover the ATET by standard arguments. In practice, however, this is generally unknown,

and we propose a two-step estimator to estimate the ATET when the MED exists. The first step is

a model selection step where we estimate the MED. With a discrete dose space, this is a standard

sequential hypothesis test problem, with standard methods leveraging pairwise comparisons to

identify the highest dose that is statistically different from the placebo (Dunnett and Tamhane,

1992). We propose a non-parametric method that uses the entire p-value distribution, generated

by pairwise dose comparisons, developed by Mallik et al. (2011) and adapted by Sales (2024) to a

sequential hypothesis testing problem. In the second step, we utilize this parameter to estimate

the ATET with a standard difference-in-differences estimator.

This procedure has many desirable qualities. In the limit, the MED estimator will never mistakenly

identify a treated unit as a control. As a result, it will be asymptotically conservative, as the only

statistically error will be choosing an MED below the true value, which still identifies a group of

valid control units. Our simulations show that this property is achieved at a relatively low number

of observations per dose, suggesting excellent finite sample performance. Further, this procedure

will estimate an MED at the boundary, which provides a check on our identifying assumption.

Put differently, if there are no untreated units, the MED estimator will choose only the lowest dose

as the control group.

However, since the chosen MED can lie below the true value even in the limit, our second stage
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estimator will provide in expectation an attenuated ATET. This is due to the reliance on the p-

value distribution: even asymptotically, a test of a true null hypothesis can deliver an arbitrarily

low p-value, lowering the estimated MED. We are not aware of any consistent estimator of the

MED with a fixed number of doses, though the limiting distribution of our estimator suggests

that it will often correctly identify the ATET.

To minimize the bias from joint estimation of the model and estimand, we randomly split the

dataset into two parts to tackle MED and ATT estimation separately. Specifically, we implement

K-fold cross-fitting as a generalization of this procedure, given potential improvements in finite-

sample performance (see Chernozhukov et al. (2018)). To estimate the standard error of the ATET

estimator, we use the smoothed bootstrap estimator in Efron (2014) that explicitly deals with dis-

continuities at the boundary of model regimes in estimators defined by a model selection step. We

show it achieves proper coverage of the ATET in simulations.

Our primary application of interest is a setting with a finite number of doses with many observa-

tions at each dose. As an extension, we consider what can be done with a continuous dose space

with one observation per dose. While there are similar methods available in this setting, we ar-

gue that they will likely perform very poorly. Instead, we suggest discretizing the dose space and

utilizing our MED estimator to identify a group of untreated units. With this pool, the researcher

can readily identify the dose response curve using methods introduced in Callaway et al. (2024)

that require a pool of untreated units. We conclude by showing that a similar procedure can also

be used to produce a consistent estimator of the ATT at any specific dose value in the finite case,

or range of dose values in the continuous case.

1.1 Connections to Literature

This paper contributes to three literatures. Recent technical advances to difference-in-differences

dealing with staggered adoption (Goodman-Bacon, 2021; Sun and Abraham, 2021; Wooldridge,

2021; de Chaisemartin and D’Haultfoeuille, 2020), heterogeneous treatement effects (Goodman-

Bacon, 2021; Callaway and Sant’Anna, 2021), pre-testing (Roth, 2022), and functional form spec-

ification (Roth and Sant’Anna, 2021) are increasingly well understood. However, identification

issues related to continuous treatments are actively being litigated among econometricians and

applied researchers (?Callaway et al., 2024; de Chaisemartin et al., 2023; de Chaisemartin and

D’Haultfoeuille, 2022; Sun and Shapiro, 2022; Butts, 2022). Our contribution is to show that re-
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searchers can still rely on traditional parallel trends assumptions with continuous treatments lack-

ing pure controls, and to clarify the assumptions this type of inference requires. This is not a free

lunch as we need to assume the MED exists, which is not always guaranteed in practice.

The approach in Butts (2022) to estimate treatment effects at specific locations with geo-coded

data is most similar to ours. In studying treatment explicitly as continuous distance, he notes that

researchers must know the threshold distance beyond (or below) which treatment effects begin,

and proposes a non-parametric method to estimate the treatment effect curve (what we call the

dose response function) with large data. Similarly, existing approaches to identifying treatment

effects in a difference-in-differences setting rely on additional variation not present in our set-up.

? take a related but markedly different approach to leverage continuity of the expected change

in potential outcomes as the dose approaches 0. Our framework is inspired in large part by Call-

away et al. (2024), but they assume that ex ante untreated units are available and observed by

the researcher. de Chaisemartin et al. (2023) identify causal responses with additional variation

in the treatment variable: If the dose changes over time and there exists a group of stayers or

a group of quasi-stayers, then the average derivative among the treated is identified. Sun and

Shapiro (2022) provide impossibility results on identifying causal responses in TWFE regressions

absent such additional information. They show that with the existence of a pure control, a mod-

ified instrumented difference-in-differences approach is sufficient to target an average of causal

responses among treated units. We contribute to this work by providing a consistent framework

to estimate a new causal parameter, the ATET, without pure controls, a case that is common in

research designs estimating continuous treatment DD.

We use numerous results from the literature on threshold and change-point estimation. In a simple

model of a minimum effective dose with a homogeneous linear dose response, the MED consti-

tutes a change-point in an underlying linear model. Inference is complicated because the change-

point is not identified under the null hypothesis of no dose response (Hansen, 1996). We show

how these methods can be utilized in a continuous difference-in-differences setting whenever rel-

evant parametric assumptions hold. Hansen (1999) develops this theory in a panel data setting,

which now even has a dedicated Stata command (Wang, 2015). Recent work has developed theory

to accommodate dynamic panels (Seo and Shin, 2016), interactive fixed effects (Miao et al., 2020),

and heterogeneous change-point and slope coefficients (Miao et al., 2020).

Finally, we contribute to a literature spanning several disciplines which highlights the problems
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inherent to dichotomizing a continuous variable. The motivation for this specification varies by

application: the psychology literature dichotomizes either one or two continuous variables to

use a more familiar one-way or two-way ANOVA design (MacCallum et al., 2002); the clinical

literature targets a threshold for biomarkers that maximizes the predictive use of flagging patients

who fall above this threshold (Altman et al., 1994); and the epidemiology literature categorizes

continuous controls into several groups to model a more flexible linear specification (Brenner,

1997). For example, number of cigarettes smoked per week might be dichotomized into “non-

smoker,” “light smoker” and “heavy smoker.”

Some of this work may not be relevant to economists who often explicitly model continuous vari-

ation in data. In fact, well-known results on measurement error would immediately identify this

as problematic (see Bound et al. (2001) for a summary). However, dichotomization persists due

to the lure of a difference-in-differences research design, in part due to the ability to falsify its

main identifying assumption (parallel trends) with a visual and statistical pre-trends test given

the availability of at least one additional period before treatment. We show that similar problems

arise as in earlier work, which warrants a clear statement of necessary identifying assumptions

that must hold to identify meaningful estimands. We aim to do this in the remainder of the paper.

Section 2 describes our potential outcomes framework, formalizing the baseline assumptions needed

to identify and estimate the ATT. Additionally, we use the framework to characterize the state of

current practice in continuous DD estimation. In Section 3, we propose our non-parametric es-

timator and simulation evidence of its performance in finite samples. Section 4 describes some

extensions to our main results, and Section 5 concludes.

2 Framework

2.1 Setup

Following Callaway et al. (2024), we consider an environment with two time periods t ∈ {τ−1, τ}

and N units i ∈ {1, ..., N}, where some outcome Yi,t is observed. Units are assigned a treat-

ment dose Di, which is also observed by the researcher. Data are independent and identically

distributed across units.

A1 Random sampling: {Yi,τ , Yi,τ−1, Di}Ni=1 is independent and identically distributed (iid)
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The dose distribution is given by the cumulative distribution function FD(d) with bounded and

compact support on R++ and a well-defined probability distribution function. Formally,

A2 Dose distribution: Di ∼ FD(d) over compact supp{Di} := D ⊂ R+, which admits a Radon-

Nikodym derivative f(d) such that f(d) > 0∀d ∈ D. Let dl = inf D and du = sup D.

In most applications, the support D is either discrete or continuous over a closed interval. To

facilitate discussion, we clarify assumptions for each of these cases

A2.1 Discrete dose distribution: The support of the dose distribution is given by D = {d1, ..., dJ}

for some finite J where 0 < d1 < d2 < ... < dJ . The CDF FD(d) admits a probability mass

function f(d) such that f(d) > 0 ∀d ∈ D.

A2.2 Continuous dose distribution: The support of the dose distribution is given by D = [dl, du]

for some 0 < dl < du. The CDF FD(d) admits a probability density function f(d) such that

f(d) > 0 ∀d ∈ D.

In the next section, when we introduce our core estimation strategy, we assume a finite number of

doses as in A2.1. In the section after, we consider a continuous dose distribution as in A2.2. All

results in the current section apply to both and so we only specify A2.

2.2 Potential Outcomes

In each period, let Yi,t(Di, Lt) denote potential outcomes, which take two arguments. The first

argument is the dose assigned to each unit. In addition, we assume there is some policy of interest

to the researcher that is implemented at time τ . The second argument, Lt, is an indicator for the

policy of interest being implemented in time τ . In applications of interest, Lτ−1 = 0 and Lτ = 1,

which we formalize by writing observed outcomes as a function of potential outcomes:

A3 Observed Outcomes: In period τ−1, observed outcomes are given by Yi,τ−1 = Yi,τ−1(Di, 0).

In period τ , observed outcomes are given by Yi,τ = Yi,τ (Di, 1).

Even though its value is fixed, we introduce Lt to define a counterfactual where the policy was

not implemented (Lτ = 0) for all units in period τ . To define outcomes in period τ − 1, Callaway

et al. (2024) assume any unit that receives a positive dose experiences an outcome equivalent to its

untreated outcome. In our setting, no units receive a 0 dose, but are unaffected by their dose value

since the policy is not in place until period τ . Introducing Lt allows us to formalize this intuition.
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2.3 Target Causal Estimands

With Pt = 1{t = τ} indicating the time when the policy is implemented, observed outcomes are

Yi,t = (1− Pt)Yi,t(Di, 0) + PtYi,t(Di, 1) (2)

The policy indicator Lt enables us to consider a useful thought experiment, which we use to define

our target estimands. Our building block is an individual treatment effect (ITE), or the difference

between the observed (treated) outcome and a counterfactual one in a world where the policy

was not implemented

µi(Di) ≡ Yi,τ (Di, 1)− Yi,τ (Di, 0) ITE

By considering how this changes as the dose is varied we trace out the dose response function

(DRF), which might vary across units. We target a variety of averages of these parameters. Fol-

lowing Callaway et al. (2024), the average treatment effect at dose d (ATT(·|d)) is given by

E[µi(a)|Di = d] = E[Yi,τ (a, 1)− Yi,τ (a, 0) | Di = d] ATT(a|d)

Intuitively, the individual treatment effect of receiving dose a is averaged over all units receiving

the dose d. Note that this is defined as a function of a for every dose level d. Of particular interest

is the average effect at the actual dose received, ATT(d|d). We can generalize this by averaging

over all treated units at the dose at which they were treated. Letting Ti = 1 denote all units that

receive treatment allows us to define the average treatment effect on the treated (ATT)

E[µi(Di)|Ti = 1] = E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|Ti = 1] ATT

Note that even if all units are treated, this is still well-defined, but inference becomes more com-

plicated. Without a comparison group, estimation of the ATT must necessarily arise from extrap-

olating an estimated counterfactual in the pre-period and comparing this to the observed trend.

Perhaps the simplest implementation of this idea is the interrupted time series (ITS), though more

sophisticated approaches exist as well (Botosaru et al., 2024). However, ITS methods are not

widely used in microeconometrics, perhaps because they depend on estimating a secular trend

in the pre-period (Turner et al., 2021), violating the core assumption of a TWFE design with an
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unrestricted time fixed effect.

In light of these difficulties, practitioners have generally opted to leverage differences in intensity

of treatment instead of treatment status. However, as Callaway et al. (2024) point out, as a result,

these designs estimate a different causal parameter, the average causal response. Intuitively, com-

parison of “more” and “less” treated units prevents reliance on extrapolation by making within

period comparisons, but necessitates focus on a different estimand.

We cannot escape this trade-off but opt for an estimand similar to the ATT and likely of interest

to the researcher in its own right. Let TE
i indicate units which are effectively treated, where a

unit is effectively treated if it’s potential outcome is changed by the policy of interest; that is, if

Yi,τ (d, 0) ̸= Yi,τ (d, 1). Then, we can define the average treatment effect on the effectively treated (ATET)

E[µi(Di)|TE
i = 1 = E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|TE

i = 1] ATET

In our view, this aligns much more closely with practitioner intentions in a discretized design. The

ATET is our primary estimand of interest, framing our discussion of identification going forward.

2.4 Current Practice

We use the framework described above to characterize current practice, focusing on specifications

which dichotomize the continuous treatment at some researcher-specified threshold. One reason

for this approach is to identify causal effects under minimal assumptions on the data-generating

process, which we also pursue by eschewing parametric assumptions.

2.4.1 Metastudy

To get a sense of the use and justification of a binned approach, we conduct a small metastudy.

Using Google Scholar, we query all papers published in the American Economic Review between

2000 and 2018 which contain the keywords “difference-in-difference” and ”continuous” in the

manuscript. We find 178 total papers that satisfy these requirements and after checking each one,

retain only those that estimate a continuous treatment difference-in-difference model. Of these

44 papers, 31 estimate a full dose regression like (1). The remaining 13 dichotomize the dose at

some value or percentile, comparing units above and below the researcher-defined cutoff. In our
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framework, this is equivalent to the bivariate regression

∆Yi,t = α+ β · 1(Di ≥ dr) + εi,t (3)

Researchers choose some threshold dr and use more exposed units (di ≥ dr) as a “treatment”

group to compare to less exposed units (di < dr) in a “control” group, to recover a binary DD

structure. Our metastudy suggests that one prominent motivation to dichotomize is to recover a

traditional difference-in-differences setup that relies on comparisons between treated and control

units. In the “2” × 2 setting here, regression recovers a classic difference-in-differences of means

β̂ = Ê[∆Yit|Di ≥ dr]− Ê[∆Yit|Di < dr] (4)

Where Ê denotes the sample average equivalent of the population expectation. While this design

has intuitive appeal, it is unclear what the causal estimand is in this approach, let alone if the

binned estimator is unbiased or consistent.

2.4.2 What Parameter Does TWFE Recover?

Consistent with this design mimicking a standard binary difference-in-differences design, prac-

titioners often invoke a standard parallel trends assumption. We introduce this assumption for-

mally in our setting:

A4 Parallel Trends: E[△Yiτ (Di, 0)|Di = d] = E[△Yiτ (Di, 0)|Di = d′] ∀d, d′ ∈ D

In a DD setting with an untreated group, this assumption would state that the trend of any treated

group in the absence of treatment would equal that of the control group in expectation. In our

setting, since there is no zero dose, we assume that if no policy was passed and no units were

treated, units at each dose level would have the same trend in outcome between period τ − 1 and

τ in expectation. In a setting with a zero dose group, this assumption is satisfied by requiring that

units at each dose have parallel trends to the untreated group.

Now we can consider that the estimator in (4) will deliver under assumptions A1-A4. Intuitively,

since the “control” group in this setting receives a treatment, we do not recover the ATT, but rather

the difference in average treatment effects for both groups. More precisely, we are averaging the

dose-specific ATT(d|d) estimands, weighted by the observed dose distribution:
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Proposition 1. If assumptions A1-A4 hold, the binned difference-in-differences estimator recovers

∫ du

dr

ATT(d|d) f(l)

1− F (dr)
dl −

∫ dr

dl

ATT(d|d) f(l)

1− F (dr)
dl

Note that, even though untreated outcomes are not observed in period τ , we arrive at an expres-

sion involving causal estimands as untreated potential outcomes are differenced out.

There is no clear relationship between the term in Proposition 1 and the ATT. Using the law of

iterated expectations, we can write the ATT as

ATT =

∫ du

dl

ATT(d|d) f(l)

1− F (dr)
dl

In fact, they are in tension; while the binned estimator recovers the difference of averaged ATT(d|d)’s

for the “treated” and “control” group, the ATT is the weighted sum of these objects:

ATT = (1− F (dr))

∫ du

dr

ATT(d|d) f(l)

1− F (dr)
dl + F (dr)

∫ dr

dl

ATT(d|d) f(l)

1− F (dr)
dl

Perhaps the clearest way this can cause problems is if the dose response function is not monotonic,

in which case it can both be true that ATT > 0 but the binned estimator is negative. To avoid this

outcome, we would need to impose the further assumption that µ(d|d) is monotonic - This would

ensure that E[β̂] has the same sign as the ATT, but the bias from such an estimator would still have

unknown sign. We also explore the relationship between this estimator and the ATET under the

assumption of a minimum effective dose in Appendix Section B.1.

In general, it is not possible to “rescue” this approach by making parametric assumptions. To see

this, consider the case of a homogenous, linear dose response function, given by µi(di) = βdi,

with a dose distribution that is approximately normally distributed with mean µ and standard

deviation σ.1 The ATT in this case will simply be equal to βµ. However, using well-known results

from selection models, we show in Appendix Section A.6 that the binned estimator will yield

βσ
ϕ(dr−µ

σ )

Φ(dr−µ
σ )(1− Φ(dr−µ

σ ))

Which is approximately equal to 1.5βσ when dr is chosen to be the median. In this case, the binned

1This is an approximation as even for a large, positive µ this distribution can take negative values, violating A2.
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estimator is a function of the dose distribution’s standard deviation, while the ATT is a function

of the dose distribution’s mean, even under the restrictive assumption of a linear dose response.

Instead, we might want to make the weaker claim that, while we can’t estimate the ATT, this

above/below comparison still delivers an estimand of significance. Unfortunately, the expression

in Proposition 1 does not have a causal interpretation without further assumptions. We can see

this by decomposing the difference in Proposition 1 into a causal component and a selection com-

ponent. Instead of comparison across doses as in a continuous design, we are comparing across

distributions of doses, as illustrated in the following lemma:

Lemma 1. If assumptions A1-A4 hold, the binned difference-in-differences estimator can be written as

∫ du

dr

µ(d|d) f(l)

1− F (dr)
dl −

∫ dr

dl

µ(d|F−1
d>dr

(Fd<dr(l))
f(l)

F (dr)
dl

+

∫ dr

dl

{µ(d|F−1
d>dr

(Fd<dr(l))− µ(d|d)} f(l)

F (dr)
dl

The first line is a causal estimand, measuring the causal response resulting from moving from the

dose distribution below dr to the dose distribution above dr. The second line is a selection term,

representing the fact that units that receive different doses might not have the same dose response

at dose d. Fundamentally, this lemma reinforces that by discretizing we canot avoid the issues

inherent in dose comparisons emphasized in Callaway et al. (2024).

2.4.3 Inflated Type 1 Error Rate

The analysis thus far implicitly assumed that the researcher cutoff dr was chosen without regard

to what the data look like. However, since there is not much consensus on how to choose a cutoff

for empirical analyses, this is largely left to researcher discretion. This is worrying as the strate-

gic choice of where this cutoff is can lead to substantial inflation of the Type I error rate. This is

well known in the clinical literature, where it was common practice to choose a cutoff for some

biomarker by minimizing the p-value, arguing that such a procedure would lead to the most pre-

dictive cutoff point (Altman et al., 1994). While we are not aware of any work promoting this ap-

proach, concerns about p-hacking and publication bias in difference-in-differences (Brodeur et al.,

2020) suggest that we should be cautious about the sensitivity of results to researcher choice of dr.

It will come as no surprise that choosing a threshold “optimally” - that is, with the lowest p-value
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- will lead to an inflated Type I error rate. Rather, it is the degree of inflation that occurs that is of

concern, which can be calculated (approximately) from a known asymptotic distribution.

Recall the model in (3) where the researcher regresses an outcome △Yi on a dichotomized dose

variable. The coefficient estimate β̂ converges to E[△Yi|Di ≥ dr]−E[△Yi|Di < dr] as this is simply

a t-test of the difference in means between the “treatment” and “control” groups. Under the null

of no difference in means between groups, let Tn(d) denote the value of this t-statistic for sample

size n and cutoff d. We consider the maximum of these statistics from some lower bound d1 to

some upper bound d2, denoted by

maximize
d ∈ [d1, d2]

|Tn(d)| (5)

Lausen and Schumacher (1992) show that this object converges to the supremum of the absolute

value of a standardized Brownian bridge, given by

sup
t∈[ϵ1,ϵ2]

|B0(t)|
(t(1− t))1/2

(6)

Where ϵ1 = F (d1) and ϵ2 = F (d2). Miller and Siegmund (1982) provide the following asymptotic

approximation for the Type I error of this distribution

P

[
sup

t∈[ϵ,1−ϵ]

|B0(t)|
(t(1− t))1/2

≥ z

]
=

4ϕ(z)

z
+ ϕ(z)

(
z − 1

z

)
ln

(
(1− ϵ)2

ϵ2

)
+ o

(
ϕ(z)

z

)
(7)

Where we have simplified the set of cutoffs to search over to the symmetric range [ϵ, 1− ϵ]. Using

the z-score that would be used to define the rejection region of this test, we can calculate the actual

Type 1 error probability would result. We reproduce part of Table 1 from Miller and Siegmund

(1982) to give a sense of how these levels change.

Table 1: Inflation Rejection Rates of Null Hypothesis

Search Region

Significance Level 1/3 1/4 1/5

α = .10 .40 .49 .55
α = .05 .24 .31 .35
α = .01 .07 .09 .11

Consider a test with the standard 5% Type I error rate. Searching between the 10th and 90th per-

centile would result in a realized Type I error rate of 49%, an inflation of 10 times the presumed
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level. Compressing the interval of search ameliorates the problem only slightly. Searching in the

interquartile range results in an error rate of 31%, and even highly significant results (p = 0.01)

would exhibit almost 10 times the assumed level of error.

In any case, these calculations suggest that it would be advantageous to “tie the hands” of the

researcher to restrict their choice of dr and limit the potential inflation of Type I error. However,

a heuristic approach to this would also likely result in incorrect standard errors, as standard DD

estimates do not account for uncertainty over what this cutoff is. In the next section, we introduce

a non-parametric method to estimate this cutoff, in effect systematizing the process of choosing dr,

as well as a bootstrapping approach that accounts for the uncertainty over the value of the cutoff.

3 Minimum Effective Dose (MED)

We first describe minimal assumptions that identify the ATET. To do so, we propose splitting the

sample so one part of the dataset is used to estimate a suitable control group, and the other utilizes

this group to estimate the ATET. We then use the smoothed bootstrap method to calculate standard

errors and conduct simulations to understand the finite sample properties of our estimator.

3.1 Existence Assumption

All empirical settings suffer from the fundamental problem of causal inference, as we are unable

to observe treated and untreated observations in the same time period for any unit. In a standard

difference-in-differences setting, assumptions on the progression of counterfactual untreated out-

comes for a treated group identify causal effects by comparing outcomes for treated and untreated

groups before and after a policy change. In our setting, inference is further constrained as these

comparisons are not possible because all units are either treated or untreated in each time period.

One way to restore the standard DD setting is to assume that untreated outcomes are observed for

some units, even if all of them were treated. We operationalize this by assuming that a Minimum

Effective Dose exists —intuitively, this restricts the individual treatment effect function µi(di) to

equal zero for units receiving a dose below some threshold dc. Formally

A5 Minimum Effective Dose (MED) exists: ∃ dc ∈ D s.t. ∀Di < dc, Yiτ (Di, 1) = Yiτ (Di, 0)

Note that we do not assume units that are untreated exist. Rather, we assume that low dose units

do not exhibit a treatment response so that their treated and untreated outcomes are identical at
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the dose they experienced. Under Assumption A5, potential outcomes in (2) can be simplified to

Yi,t = (1− Pt)Yi,t(Di, 0) + Pt{Yi,t(Di, 1)Ti + Yi,t(Di, 0)(1− Ti)} (8)

where Ti := 1{Di ≥ dc} denotes the (effectively) treated group. As this expression illustrates, the

assumption of an MED allows us to recover a standard binary difference-in-differences setting.

Under the standard parallel trends assumption, a difference-in-differences estimator will recover

the average treatment effect for all (effectively) treated units above the MED

Proposition 2. Suppose that assumptions A1-A3, A4 (Parallel Trends), and A5 (Minimum Effective Dose)

hold. Then, the binned difference-in-differences estimator using the MED dc recovers the ATET.

In our estimation, this is the most straightforward justification of the binarization approach that

30% of the papers in our metastudy pursue. However, as we point out here, it relies on the as-

sumption of a minimum effective dose, as well as a parallel trends assumption. Further, the DD

estimator studied above is generally infeasible, as it relies on knowledge of the MED dc.

3.2 Recasting as a Threshold Model

To overcome this, we propose a model selection step to choose dc by leveraging advancements

in the threshold estimation literature. The standard approach involves assuming a homogenous,

parametric dose response function and estimating treatment effects and the threshold dc simulta-

neously. For example, we could specify the dose response function as µi(Di;β) = β1+β2(Di− dc)

reflecting a linear “partial linear dose” approach that allows for a jump (β1) in treatment effects

beyond the cutoff (dc) as well as a constant multiple effect given their dose (β2). Then, the true

parameters (β0, β1, β2, dc) will solve

argmin
β,d

N∑
i=1

[∆Yit − β0 − µi(Di;β1, β2) · 1{Di ≥ dc}]2 (9)

For every choice of dc, (β0, β1, β2) can be estimated via least squares. Searching over all dc and

choosing the parameter set minimizing the expression in (9) will yield the solution (Hansen, 2000).

This method will work when the dose response function is homogeneous, specified correctly, and

meets certain regularity conditions. We suspect that these restrictions will be unpalatable to prac-

titioners and instead propose a nonparametric approach that relaxes many of these restrictions.
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Using (8), we can write observed outcomes in each time period as

Yi,τ−1 = Yi,τ−1(Di, 0)

Yi,τ = Yi,τ (Di, 0) + [Yi,τ (Di, 1)− Yi,τ (Di, 0)]Ti

Taking the first difference of observed outcomes yields

△Yi,τ = △Yi,τ (Di, 0) + [Yi,τ (Di, 1)− Yi,τ (Di, 0)]Ti

= △Yi,τ (Di, 0) + µi(Di)1(Di ≥ dc)

Finally, we can rewrite the right hand side using conditional expectations

△Yi,τ = E[△Yi,τ (Di, 0)|Di] + E[µi(Di)|Di]1(Di ≥ dc) + εi

= E[△Yi,τ (Di, 0)] + E[µi(Di)|Di]1(Di ≥ dc) + εi

Where the second line follows from parallel trends (A4). We’ve written the first difference of

observed outcomes as a standard threshold response model with an aggregate dose response

function of the form E[µi(Di)|Di]. For estimation to become feasible, we need to impose some

restrictions on what this functions looks like. We opt for a “no-crossing” property:

A6 No crossing: Exactly one of the following is true:

A6.1 E[µi(Di)|Di] > 0 ∀Di > dc

A6.2 E[µi(Di)|Di] < 0 ∀Di > dc

Note that this is far weaker than assuming monontonicity; we need only that the aggregate dose

response does not change sign. Inference in this setting can be broken down into two steps. The

first step involves model selection: we need to identify which dose is equal to dc. The second

is estimation, where we estimate the ATET. To conduct proper inference, standard errors should

account for uncertainty in both steps.
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3.3 First Stage: Model Selection and Choosing dc

We restrict our focus to Assumption A2.1 that the dose distribution is discrete, with doses taking

the values {d1, d2, ..., dJ}. This implies a simple expression for the conditional expectation function

E[△Yi,t|Di = dj ] =


E[△Yi,τ (Di, 0)], for di ≤ dc

E[△Yi,τ (Di, 0)] + E[µi(Di)|Di = dj ], for di > dc

We add the assumption that there are both treatment and control units, which makes this estima-

tion procedure worthwhile:

A7 Interior MED (Discrete): d1 < dc < dJ

However, it is also worth emphasizing that if this assumption fails we will also be able to identify

an MED in the boundary. If d1 = dc, then functionally no MED exists, as we find evidence of a

dose response after just the first dose. If dJ = dc, then all units are untreated, and the implied

ATET estimate would be 0.

Under this assumption, there are J − 2 possible specifications to choose between, as dc can take

any value in the set {d2, ..., dJ−1}. Denote each potential specification by the dose d that is asserted

to equal dc. Each specification is associated with a falsifiable hypothesis H0(d), defined by

H0(d) : For all d′, d′′ < d,E[△Yi,t|Di = d′] = E[△Yi,t|Di = d′′]

These hypotheses have two important properties. First, they are nested: if H0(d) is true, then

H0(d
′) is true for all d′ < d. Second, they demarcate the parameter of interest, dc, as follows: H0(d)

is true if and only if d ≤ dc, under the no crossing assumption. These properties allow us to utilize

the procedure developed in Sales (2024) to choose dc.

Consider an equality of means test for each hypothesis, letting P (d) denote the p-value from each

test. There are a large number of composite hypotheses that could be tested; our preferred method

will be to compare the mean at every dose with the mean at d1. If the null is true, P (d) ∼ U(0, 1),

and so E[P (d)] = 1/2. If it is false, P (d) →n 0. By the plug-in principle, in the limit d̂c solves

argmin
d∈D

∑
i:Di≤d

[
P (Di)−

1

2

]2
+

∑
i:Di>d

[P (Di)]
2 (10)
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Mallik et al. (2011) first proposed this method to identify dc for a threshold dose response model

with continuously distributed dose variable. Sales (2024) extends the method to test nested hy-

potheses, suggesting it is well suited for threshold estimation.

Figure 1 illustrates how this estimator functions. We consider a dose distribution with 100 values

evenly spaced between 0 and 1 with dc = 0.5. Figure 1a plots the limiting distribution of p-

values: all differences to the right of dc produce a p-value of 0, while all differences to the left

of dc constitute a draw from a U [0, 1] distribution. The lines consist of a “well estimated” stump

function given by equation 10 that arrives at dc. Unfortunately, this estimator will not be consistent

for dc. We are not aware of any estimator that is consistent for dc when there are a finite number

of doses and no parametric assumptions, though we do not have a formal impossibility result.

The figure illustrates that if we have an “unlucky” draw right to the left of the cutoff, with a

p-value close to 0, we will estimate a threshold below the true dc. Regardless of the number of

observations around the threshold, since P (d) ∼ U(0, 1) in the limit, this uncertainty must persist.

We nevertheless recommend this estimator because of two desirable properties. First, it always

identifies a valid control group asymptotically. In the limit, d̂c exceeds dc with probability zero:

Proposition 3. Suppose that assumptions A1, A2.1, A3, A4 (Parallel Trends), A5 (Minimum Effective

Dose), and A6 (No Crossing) hold. Then, P(d̂c > dc) →n 0

To see this, we can rearrange the problem in Equation 10 and verify it is equivalent to

d̂c := argmax
d∈D

∑
i:Di≤d

[
P (Di)−

1

4

]
(11)

In the limit, any dose above the threshold will have a p-value of 0, so the value of the objective

function will decrease by 1/4 for every such dose included.

Second, our simulations indicate that this estimator performs very well in the limit, even if it is

not consistent. This asymptotic distribution of this estimator is difficult to derive analytically,

but, since the limiting distribution of the p-values are known, simple to simulate. We run 100,000

simulations with 100 dose values where dc is equal to 50. In each simulation, we draw a p-value

from a U [0, 1] distribution for all doses at or below dc and set this p-value equal to 0 for all doses

above dc. The estimated asymptotic distribution of d̂c is plotted in Figure 1b. Our estimator

identifies dc correctly in around 70% of all simulations, is no more than one dose below dc in
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around 90% of simulations, and is no more than two doses below dc in around 95% of simulations.

We also verify that it never takes a value above dc. So, while it is not consistent, it does take the

true value of the parameter of interest for the large majority of simulations.

3.4 Second Stage: Estimating the ATET and Constructing Honest Standard Errors

From Proposition 2, a standard difference-in-differences estimator will identify the ATET if dc is

known. Following the plug-in principle, we utilize the same estimator using an estimator of dc:

ÂTET = Ê[∆Yit|di > d̂c]− Ê[∆Yit|di ≤ d̂c] (12)

Where d̂c is selected using the procedure outlined in the previous section. Since d̂c is not a consis-

tent estimator of dc, we cannot use standard consistency arguments. However, since d̂c is asymp-

totically conservative, we will always estimate the difference in means in the control group accu-

rately. Occasionally, control units will be misclassified as treated, but the no crossing property will

guarantee that this will only attenuate the estimator, which we establish formally:

Proposition 4. Suppose assumptions A1, A2.1, A3, A4 (Parallel Trends), A5 (Minimum Effective Dose),

A6 (No Crossing), and A7 (Interior MED) hold. Then the standard difference-in-differences estimator in

(12) using the first-step estimator d̂c from (11) is an attenuated estimator of the ATET asymptotically.

To improve finite sample performance, we use cross-fitting based on separate partitions of the

data to estimate d̂c and ÂTET. Following Chernozhukov et al. (2018), we separate the data into K

equally sized groups {G1, ..., GK}. For each group Gk, we use the observations in its complement

GC
k := G \Gk for the model selection step to choose d̂c. In the second stage we estimate the ATET

in Gk using d̂c in the plug-in estimator given by (12). We repeat this for every group, obtaining a

set of K estimates {ÂTETk}k=1,...,K and average them to obtain the final estimate ÂTETCF .

We expect this estimator to exhibit significant finite sample improvements over the two-sample

procedure since it safeguards against spurious inference due to outliers in small samples by im-

plementing the estimator across a broader range of the original data (Chernozhukov et al., 2018).

Whenever K = 2, this constitutes a simple sample-splitting estimator, which uses each half of the

original sample to estimate d̂c and ÂTET.
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Figure 1: Visualizing the Asymptotic Distribution

(a) p-value Distribution in the Limit
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(b) Estimator distribution in the limit

Figure 1a plots an example of what the distribution of p-values should look like in the limit. The dose distribution is
discrete uniform over [0, 1] taking 100 values, where the minimum effective dose dc is at 0.5. We plot a straight line at
1/2 before the cutoff and at 0 after the cutoff to illustrate where the best fit line estimated in (10) and (11) should lie.
Using the asymptotic distribution of this estimator, Figure 1b plots the proportion of times our estimator chooses each
dose value as dc in a simulation exercise.
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3.4.1 Accounting for Uncertainty Over the Choice of dc

To account for the uncertainty resulting from model selection as well as estimation, we use the

bootstrap aggregation method and the corresponding standard errors proposed in Efron (2014).

We first generate B bootstrap samples from our dataset, use each to produce an estimate of our

parameter of interest ÂTETb, then take the average of these to generate a point estimate:

ÂTETB =
1

B

B∑
b=1

ÂTTb

As d̂c changes, ÂTETb changes in a discrete manner; since there are a discrete number of doses,

moving from d̂c = dj to d̂c = dj+1 entails a discrete jump in ÂTETb, generating a “lumpy” boot-

strap distribution. Taking the average over the set of bootstrap samples corrects this by generating

a smooth estimator in the presence of these discrete changes. Efron (2014) suggests an adjustment

to the standard bootstrap standard error calculation to obtain a better approximation of uncer-

tainty. Let Wij denote the number of times that observation j was drawn in bootstrap replication

i, and let Wj denote the average of Wij across all bootstrap replications B for each observation j.

Then, the standard error estimate is defined as

σ̂B =

√√√√ n∑
j=1

B∑
i=1

(Wij −Wj)(ÂTETb − ÂTTB)/B

And the standard interval ÂTETB ± 1.96 × σ̂B delivers a finite sample approximation to a 95%

confidence interval for the ATET, which we test in the next section.

3.5 Simulation Evidence

To understand the finite sample properties of our proposed estimator, we run a Monte Carlo

simulation with 100 repetitions. Our sample consists of i = {1, ..., N} units observed across

j = {1, ...,M} dose values. The data generating process is given by

△Yi,τ = E[△Yi,τ (Di, 0)] + E[µi(Di)|Di]1(Di ≥ dc) + εi

For simplicity, we set E[△Yi,τ (Di, 0)] = 0 and E[µi(Di)|Di] = 1. The dose distribution is bounded

by dL = 0 and dU = 1, and the true threshold is set at dc = 0.5. For each simulation, we draw
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M doses, where the dose is spaced evenly across [0, 1]. For each unit i, we assign their outcome

according to the DGP, where εi ∼ N(0, 1).

It might seem strange to use a constant dose response function, as in many empirical settings

the dose response function is assumed to be monotonic. If so, the performance of our estimator

hinges on the first dose past the MED, which is the most difficult dose response to distinguish from

0. We view the constant dose response as equivalent to the lowest dose response in this setting.

Additionally, since our method relies on pairwise comparisons, the distribution of the dose does

not impact estimation outside of the number of observations at each dose. Thus, assuming the

dose is evenly spaced in this setting is without loss of generality.

3.5.1 First Stage Estimation of dc

To begin, we run a series of simulations to understand the accuracy of our estimator of dc. Our

first Monte Carlo experiment considers only the model selection stage to elicit the finite sample

properties of our proposed estimation procedure. We consider a relatively parsimonious set of

20 doses that are equidistant between 0 and 1. Figure 2 plots results for 10 (200), 25 (500), 50

(1,000), and 100 (2,000) observations at each dose (total observations). Note that the true number

of observations per dose is half of this amount, as we are using a 2-fold cross-fit estimator.

For a low amount of observations per dose (10), we see that the result in Proposition 3 does not

hold; the estimator sometimes chooses a dose value over the true threshold. However, these

erroneous choices disappear at 50 observations per dose. We view this as strong evidence that the

number of observations per dose required to identify a correct control group is relatively low.

3.5.2 Second Stage Estimation of ATET

Having verified the theoretical properties of our selection of d̂c, we turn to estimation of the ATET.

These estimates arise from a cross-fitting procedure in which half of the sample is used to choose

d̂c, and the remaining half utilizes this to estimate the ATET. We then flip the halves used for each

part of the estimation and average these to arrive at an estimate, which we plot in Figure 3. For

low numbers of observations, we see a large variance in estimates; however, once there are 50

observations per dose, our estimates are tightly distributed around the True ATET of 1. Note that,

due to the result in Proposition 4, there is a leftward bias as the ATET will be attenuated.
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Figure 2: Finite Sample Performance of Threshold Estimation
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(d) 100 Observations Per Dose

This figure plots the distribution of threshold estimates across 100 simulations. There are 20 equidistant dose values
between 0 and 1, where 0.5 is the true cutoff, and the caption on each figure gives the number of observations per dose.
See text for details on data generating process.

3.5.3 Standard Error Coverage

Table 2 below displays the coverage rate for the Smoothed Bootstrap Estimator of the standard

error of the Split-Sample estimator, using 100 simulations and 500 bootstrap replications, across

various parameter and sample size values. We find that at very low numbers of observations per

dose (10 and 25) there is very poor coverage, likely reflecting the large mass of observations below

the true ATET in Figure 3. However, this quickly improves at higher doses, and we recover proper

coverage at 100 observations per dose, which is often met in applications.

Table 2: Bootstrap Coverage

M=10 M=25 M=50 M=100

0.040 0.150 0.880 0.980
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Figure 3: Finite Sample Performance of ATET Estimation
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(d) 100 Observations Per Dose

This figure plots the distribution of ATT estimates across 100 simulations. There are 20 equidistant dose values between
0 and 1, where 0.5 is the true cutoff, and the caption on each figure gives the number of observations per dose. See text
for details on data generating process.

4 Extensions

4.1 Continuous Case

We now study the case where Assumption A2.2 holds and there is a continuous dose distribution

where no dose is observed more than one time. This clearly precludes the direct use of pairwise

comparisons, but Mallik et al. (2011) develops an analogous procedure: instead of taking averages

at each dose value, create a grid over the dose space and use standard kernel smoothing estimators

to estimate local averages of the outcome. Since there is no first dose to use as a comparison group,

we assume that dc > F−1(τ) and use E[△Yi,τ (Di, 0)|di < F−1(τ)] as our reference value.

Let µ̂(d) denote the Nadayara-Watson estimator at some dose value Di = d of the change in

outcome △Y . With this estimator, we test the null hypothesis H0.d : µ(d) = E[△Yi,τ (Di, 0)|di < τ ]
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against the alternative H1,d : µ(d) > E[△Yi,τ (Di, 0)|di < τ ] using the test statistic

T (d, τ0) =
√
n · hn [µ̂(d)− E[△Yi,τ (Di, 0)|di < τ ]]

which converges in distribution to a mean-zero normal distribution with variance Σ2(d, σ) =

σ2(d)K
2

f(d) under the null, where σ2(d) is an estimate of the standard error of the regression error

term, f(d) is the PDF value at d, and K
2 is the integrated square of the kernel Li and Racine (2007).

Approximate p-values for this test are given by

P̃ (Di) = 1− Φ

{
T (d, τ̂n)

Σ2(d, σ̂)

}

In practice, of course, E[△Yi,τ (Di, 0)|di < τ ] is not known, so we need to utilize an estimator

Ê[△Yi,τ (Di, 0)|di < τ ] as well as estimates of the unknown terms in Σ2. Mallik et al. (2011) shows

that the following estimator of the cutoff will converge to the threshold dc:

d̃C := argmax
d∈[0,1]

∑
i:Di≤d

[
P̃ (Di)−

1

2

]2
+

∑
i:Di>d

[
P̃ (Di)

]2

Suppose we use this estimator in a two step procedure. First, estimate the MED cutoff in a first

stage using a random subset of the full data. Then, using the second half of the sample, estimate

the ATET using a standard regression estimator. This comprises a standard two-step M-estimator,

and under standard assumptions should allow identification of the ATET (Wooldridge, 2010). The

difficulty with this approach lies in the speed of convergence of the first stage. Mallik et al. (2013)

finds that this estimator converges at the rate n−1/(2k+1), where k is the cusp of the discontinuity

of the dose response function at dc. This is not an issue of having a poor estimator, as this meets

the minimax rate for threshold estimation identified in Raimondo (1998). As a result, assuming

the dose response function is continuous at dc implies a convergence rate no faster than n−1/3,

implying the usual standard errors from a two-step M-estimator are not asymptotically valid.

A different approach, used in Hansen (2000), uses a Bonferroni correction to construct conser-

vative but asymptotically valid confidence intervals. Threshold estimators generally have non-

standard asymptotic distributions that cannot be estimated using a standard non-parametric boot-

strap (Seijo and Sen, 2011). Mallik et al. (2013) derive asymptotically valid confidence intervals for

the approach above, though they contain nuisance parameters that are difficult to estimate. Fur-
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ther, while this estimator is consistent under any k, constructing valid standard errors for even the

first stage requires the practitioner to make an assumption on what k is, without which the stan-

dard errors will not be valid. Even if this moment was known to the researcher, it would likely

imply a very slow rate of convergence, leading to right bias unless the sample size was very large,

as it is difficult to detect a smooth, small “liftoff” from the starting value.

4.2 Discretizing the Continuous Case

Accordingly, while this route is available to researchers, we recommend a different strategy for

dealing with a continuous dose. This is motivated by the core result in Callaway et al. (2024) that

the fundamental issues around dose comparisons can be solved with an untreated group.

Instead, we propose discretizing the dose space. Consider an arbitrary partition of the dose space

Pj ∈ P , where we choose a set of exclusive bins Pj that cover D. We associate each of these bins

with a pseudo-dose dj , given by the average dose value within this bin, which is without loss

of generality as we only consider indicators for each pseudo-dose. With this structure, we can

conduct the same pairwise comparisons as before, but it is unclear what will result. Let P c
j denote

the bin that contains dc. Given the no crossing property, we know that

E[△Yi,t|Di ∈ Pj ] =


E[△Yi,τ (Di, 0)], for Pj ̸= P c

j , dj < dc

E[△Yi,τ (Di, 0)] + E[µi(Di)|Di ∈ Pj ], for Pj = P c
j

E[△Yi,τ (Di, 0)] + E[µi(Di)|Di ∈ Pj ], for Pj ̸= P c
j , dj > dc

Thus, we retain the same structure as before. However, given the previous results, we know that

in the limit this procedure will select a bin strictly below P c
j , which is the core tradeoff of this

procedure. In essence, we are trading the right-bias from a procedure that converges slowly for

left-bias from a procedure that eliminates treated observations very quickly.

Putting this all together, we propose the following procedure. First, split the sample into an model

selection portion and an estimation portion. Beginning with the model selection sample, discretize

the dose space as described above. The results in Sales (2024) require that the minimum number

of observations across bins goes to infinity. Thus, we recommend using quantile-spaced bins to

ensure that observations are evenly placed across bins. Calonico et al. (2015) provides a data-

driven method to choose bins of this type that minimize within-bin integrated mean squared
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error. Using these bins, the method described in the previous section can be utilized to estimate a

group of untreated bins. Following this, in the estimation sample, we can utilize units estimated

as controls as if they are untreated. This allows for the sophisticated method recommended by

Callaway et al. (2024) to estimate the dose response through comparisons with untreated units. A

similar bootstrap can be utilized to deliver proper standard errors on the second stage estimates.

4.2.1 Estimating BATTs

We can use a similar strategy to estimate any ATT (d|d) of interest, in either the continuous or

discrete case. Often times, different parts of the dose distribution are of interest to the researcher.

Consider a design which discretizes at the median to compare units above and below this per-

centile. To understand the impact above, say, the 75th percentile, we might instead discretize at

this quartile. This procedure correctly changes the treatment group, by considering all units above

a certain researcher-define percentile. However, it is unclear why the comparison group includes

units between the 50th and 75th percentile, which were treated in our previous comparison.

An extremely simple decomposition can illustrate the issue here. Consider a standard estimator

discretized at the 75th percentile, where dτ denotes the τ th percentle of the dose distribution:

Ê[∆Yit|di > d75]− Ê[∆Yit|di ≤ d75]

This can be rewritten as

Ê[∆Yit|di > d75]− (2/3)Ê[∆Yit|di ≤ d50]− (1/3)Ê[∆Yit|d75 ≤ di ≤ d50])

Trivially, we can write the median estimator as

Ê[∆Yit|di > d50]− (2/3)Ê[∆Yit|di ≤ d50]− (1/3)Ê[∆Yit|di ≤ d50]

Differencing these terms, we arrive at

(2/3)(Ê[∆Yit|di > d75]− Ê[∆Yit|di > d50])− (1/3)(E[∆Yit|d75 ≤ di ≤ d50]− Ê[∆Yit|di ≤ d50])

There are certainly reasons we might not trust the comparison in the first term. But comparisons of

this form are certainly more muddled with the inclusion of the second term, which arises because
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the control group in the first analysis is included as the treatment in the second.

To avoid this, we recommend separating the decision of which units should be considered treated

and which should be controls. The treated group is merely a population of interest, and should be

specified by the researcher. This could be the ATT at a specific dose or alternatively, the ATT over

a range of doses, which we call the Binned Average Treatment Effect on the Treated (BATT)

BATT[d, d′] = E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|Di ∈ [d, d′]]

By definition, then, the estimators above would be targeting BATT[d50,∞] and BATT[d75,∞], re-

spectively, but they would not be consistent without a proper control group. The methods outlined

in the previous section can be used to estimate this control group to recover identification.

5 Conclusion

In this paper, we construct a potential outcomes framework for empirical settings where all units

are treated. We formalize baseline assumptions needed for inference - the existence of a minimum

effective dose, which implies a subset of units experience untreated outcomes. Leveraging this

assumption, we propose a non-parametric estimator of the ATET that first estimates the MED in

a hold-out sample. We show in simulations that this estimator performs well at a low number of

observations and that the bootstrap estimator of the standard error achieves proper coverage.
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A Proofs

A.1 Proposition 1

Proof. Consider the probability limit of Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0], where Ti = 1(di ≥ dr).

Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0]

= E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]

= (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 1])

− (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 0])

= (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 1])

− (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 0])

= (E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|Ti = 1])− (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0])

= (E[E[Yi,τ (d, 1)− Yi,τ (d, 0)|Di = d]|Ti = 1])− (E[E[Yi,τ (d, 1)− Yi,τ−1(d, 1)|Di = d]|Ti = 0])

= (E[µ(d|d)|Ti = 1])− (E[µ(d|d)|Ti = 0])

=

∫ du

dr

µ(d|d) f(l)

1− F (dr)
dl −

∫ dr

dl

µ(d|d) f(l)

1− F (dr)
dl

A.2 Lemma 1

Proof. We add and subtract the following term to arrive at the decomposition in the text:

∫ dr

dl

µ(d|F−1
d>dr

(Fd<dr(l))
f(l)

F (dr)
dl

A.3 Proposition 2

Proof. Consider the probability limit of Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0], where Ti = 1(di ≥ dc).

Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0] →p E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]

= E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 0]

= E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 1]
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= E[Yi,τ (Di, 1)|Di ≥ dc]− E[Yi,τ (Di, 0)|Di ≥ dc] = ATT

The second equality follows from the assumption of a minimum effective dose, and the third

equality follows from the parallel trends assumptions.

A.4 Proposition 3

This follows directly from Proposition 2 in Sales (2024).

A.5 Proposition 4

Proof. Consider the probability limit of Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0], where Ti = 1(di ≥ d̂c).

Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0] = Ê[∆Yiτ |di ≥ d̂c]− Ê[∆Yiτ |di < d̂c]

= (Ê[∆Yiτ |di ≥ d̂c]− E[∆Yiτ |di ≥ dc])− (Ê[∆Yiτ |di < dc]− E[∆Yiτ |di < d̂c])

+ (E[∆Yiτ |di ≥ dc]− E[∆Yiτ |di < dc])

The second term is equal to the ATT, so we focus attention on the first term. Fix ε > 0. Then, by

the law of total probability, we can write

P(|Ê[∆Yiτ |di < d̂c]− E[∆Yiτ |di < dc]| > ε) =
∑
dj∈D

P(|Ê[∆Yiτ |di < d̂c]− E[∆Yiτ |di < dc]| > ε|d̂c = dj)P(d̂c = dj)

If dj > dc, P(d̂c = dj) goes to 0 in the limit by Proposition 3. If dj = dc, Ê[∆Yiτ |di < d̂c] converges

to E[∆Yiτ |di < d̂c] in probability by results in Proposition 2. If dj < dc, since E[∆Yiτ |di < dc] =

E[∆Yiτ |di < dj ] ∀dj < dc, note that

P(|Ê[∆Yiτ |di < d̂c]− E[∆Yiτ |di < dc]| > ε|d̂c = dj) = P(|Ê[∆Yiτ |di < d̂c]− E[∆Yiτ |di < dj ]| > ε|d̂c = dj)

This term converges to 0 in the limit as Ê[∆Yiτ |di < d̂c] converges in probability to E[∆Yiτ |di < dj ].

Taking this all together, we can take limits of the expression above to see that

lim
n→∞

P(|Ê[∆Yiτ |di < d̂c]− E[∆Yiτ |di < dc]| > ε) = 0
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Turning to the first part, we can utilize a similar decomposition:

Ê[∆Yiτ |di ≥ d̂c] =
∑
dj∈D

Ê[∆Yiτ |di ≥ d̂c, d̂c = dj ]P(d̂c = dj) =
∑
dj∈D

Ê[∆Yiτ |di ≥ dj ]P(d̂c = dj)

If dj > dc, P(d̂c = dj) goes to 0 in the limit by Proposition 3. Note that Ê[∆Yiτ |di ≥ dj ] converges

in probability to E[∆Yiτ |di ≥ dj ], so we have that

lim
n→∞

Ê[∆Yiτ |di ≥ d̂c] =
∑
dj≤dc

E[∆Yiτ |di ≥ dj ]P(d̂c = dj)

If dj = dc, this limit is equivalent to E[∆Yiτ |di ≥ dc]. If dj < dc, we can write

E[∆Yiτ |di ≥ dj ] = E[∆Yiτ |di ≥ dc]P(di ≥ dc) + E[∆Yiτ |dj ≤ di ≤ dc]P(dj ≤ di ≤ dc)

= E[∆Yiτ |di ≥ dc]P(di ≥ dc) + E[∆Yiτ |di = dc]P(dj ≤ di ≤ dc)

Where the second line follows from the fact that dc is the MED. Then,

lim
n→∞

Ê[∆Yiτ |di ≥ d̂c]− E[∆Yiτ |di ≥ dc] =
∑
dj≤dc

E[∆Yiτ |di ≥ dj ]P(d̂c = dj)− E[∆Yiτ |di ≥ dc]

=
∑
dj≤dc

(E[∆Yiτ |di ≥ dj ]− E[∆Yiτ |di ≥ dc])P(d̂c = dj)

=
∑
dj<dc

(E[∆Yiτ |di = dc]− E[∆Yiτ |di ≥ dc])P(dj ≤ di ≤ dc)P(d̂c = dj)

= −ATT ×
∑
dj<dc

P(dj ≤ di ≤ dc)P(d̂c = dj)

:= −λATT

Where λ =
∑

dj<dc
P(dj ≤ di ≤ dc)P(d̂c = dj) ∈ (0, 1).

Putting this all together,

lim
n→∞

Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0] = ATT(1− λ)
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A.6 Linear Dose Example

From work in the proof to Proposition 4, we have that

b̂BIN
1 →p E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|Di ≥ dr]− E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|Di < dr]

= E[µi(Di)|Di ≥ dr]− E[µi(Di)|Di < dr]

= β(E[Di|Di ≥ dr]− E[Di|Di < dr])

= β

(
µ+ σ

ϕ(dr−µ
σ )

1− Φ(dr−µ
σ )

− µ+ σ
ϕ(dr−µ

σ )

Φ(dr−µ
σ )

)
= βσ

ϕ(dr−µ
σ ){Φ(dr−µ

σ ) + (1− Φ(dr−µ
σ ))}

Φ(dr−µ
σ )(1− Φ(dr−µ

σ ))

= βσ
ϕ(dr−µ

σ )

Φ(dr−µ
σ )(1− Φ(dr−µ

σ ))
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B Appendix

B.1 Misspecification Analysis

The results in this section are based on a misspecification analysis where we explore alternative

assumptions that might underly the researcher design to use some threshold dr to create a treat-

ment and control group. Throughout this section, we assume that a minimum effective dose dc

exists but is unknown to and ignored by the researcher. Broadly, the hope is that, even without

knowledge of dc, throwing away dose variation can nevertheless recover an attenuated version

of the ATET. However, we show that this is generally not true, and only holds under restrictive

assumptions on the heterogeneity of the dose response function across individuals. To this end,

we introduce a formal assumption of homogeneity

A7 Dose Response Function Homogeneity: Dose response functions are the same across units

and given by µi(Di) = µ(Di)∀i.

In the simplest case, the dose response function is identical for all units, and the dose response

function is constant, so that µ(Di) = β. In this case, even without knowledge of dc, a binned

design will recover an attenuated version of the ATT

Proposition 5. Suppose assumptions A1-A4 hold, and that the dose response function is homogeneous (A7

holds) and constant, so that µi(Di) = β. Then the binned estimator under an arbitrary cutoff dr gives

b̂BIN
1 →p ATT × min

{
1− F (dc)

1− F (dr)
,
F (dc)

F (dr)

}

Proof. Consider the probability limit of Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0], where Ti = 1(di ≥ dr).

Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0]

= E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]

= (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0])

− (E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 0])

= (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 1]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 1])

− (E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]− E[Yi,τ (Di, 0)− Yi,τ−1(Di, 0)|Ti = 0])

= E[Yi,τ (Di, 1)− Yi,τ (Di, 0)|Ti = 1]− E[Yi,τ (Di, 1)− Yi,τ−1(Di, 0)|Ti = 0]

37



= E[µi(Di)1(Di ≥ dc)|Ti = 1]− E[µi(Di)1(Di ≥ dc)|Ti = 0]

= β(P (Di ≥ dc|Ti = 1)− P (Di ≥ dc|Ti = 0))

There are two possibilities.

Case 1: dr > dc. In this case, P (Di ≥ dc|Ti = 1) = 1 and P (Di ≥ dc|Ti = 0)) = [F (dr) −

F (dc)]/F (dr). So, this term simplifies to βF (dc)/F (dr).

Case 2: dc > dr. In this case, P (Di ≥ dc|Ti = 1) = [1−F (dc)]/[1−F (dr)] and P (Di ≥ dc|Ti = 0)) =

0. So, this term simplifies to β[1− F (dc)]/[1− F (dr)].

To conclude the proof, note that dr > dc implies that F (dc)/F (dr) < 1 < [1 − F (dc)]/[1 − F (dr)]

and that dc > dr implies that [1− F (dc)]/[1− F (dr)] < 1 < F (dc)/F (dr).

We find that the researcher guess leads to an attenuated estimate of the ATET (β), akin to the result

of classical measurement error. If the researcher guess is too low (dr < dc), the intuition is very

straightforward. Some of the “treatment” units are actually untreated - by definition, they receive

a treatment effect of 0 - and as a result, the estimated treatment effect is a mixture of β and 0. If the

researcher guess is too high (dc > dr), the result is more convoluted. Some of the “control” units

are actually treated, and this contamination works to attenuate the estimated treatment effect. In

addition, “treatment” units are a higher dose subset (above dr) of the true treated group (above

dc); since µi(Di) does not depend on the dose (or individual), this conditioning does not impact

the average difference in outcomes in the “treated” group, and we obtain the symmetric result in

Proposition 5.

We can also replicate this result if dose assignment is randomized:

A8 Random Dose Assignment: Dose assignment is independent of the observed dose response

so that Di ⊥ µi(Di)

Proposition 6. Suppose that assumptions A1-A4 hold, and that the dose is assigned randomly (A8 holds).

Then, the binned estimator under an arbitrary cutoff point dr will give

b̂BIN
1 →p ATT × min

{
1− F (dc)

1− F (dr)
,
F (dc)

F (dr)

}
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Proof. Under identical arguments to that in Proposition 5, we know that

Ê[∆Yiτ |Ti = 1]− Ê[∆Yiτ |Ti = 0]

→P E[µi(Di)1(Di ≥ dc)|Ti = 1]− E[µi(Di)1(Di ≥ dc)|Ti = 0]

= E[µi(Di)|Ti = 1]E[1(Di ≥ dc)|Ti = 1]− E[µi(Di)|Ti = 0]E[1(Di ≥ dc)|Ti = 0]

= E[µi(Di)](E[1(Di ≥ dc)|Ti = 1]− E[1(Di ≥ dc)|Ti = 0])

The result follows by the same arguments that conclude Proposition 5.

B.1.1 Example: (ATT)enuation Bias at Worst?

The attenuation result breaks down if we begin to relax any part of the assumption of a uniform

binary dose response function, in which case the average difference in outcomes above dr is not

identical to that for units above dc. To see this, consider an example with a binary dose response

function for all units, where the level of the response might vary across units; that is, µi(Di) = βi.

For simplicity, suppose the dose distribution is U [0, 1], the treatment cutoff dc = 1/2 for all units,

and dose response functions are given by

µi(Di) =


0 if Di < 1/2

6× 1(Di ≥ 1/2) if Di ∈ [1/2, 3/4)

24× 1(Di ≥ 1/2) if Di ∈ [3/4, 1)

(1)

In this example, all units above dc = 1/2 are treated, and the ATET is 15, which will be estimated

properly at the correct cutoff dc = 1/2. Now, we can consider alternate researcher cut-off choices.

Table 3 shows the estimated treatment effect on the treated, ÂTET, as a function of the researcher

choice of threshold. For a guess that is too low (e.g. 1/4), we will always recovered an attenuated

treatment effect, as the researcher treatment group is mixing all treated units with some fraction of

the control units. However, for a guess that is too high (e.g. 3/4), we are biased upwards, as higher

dose units have a larger (flat) dose response. This bias occurs because, unlike in Proposition 5, the

average change in outcomes above 3/4 is higher than the average change in outcomes above 1/2.

This is because the dose response βi is positively correlated with the dose Di.

If we have a heterogeneous dose response function and we are not willing to assume that dose
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Table 3: Binned Estimator Under Selection

dr [0, 1/4) [1/4, 1/2) [1/2, 3/4) [3/4,1) ÂTET

1/4 Control Treatment Treatment Treatment 10
1/2 Control Control Treatment Treatment 15
3/4 Control Control Control Treatment 22

assignment is random, the above example illustrates that even with a very simple (binary) het-

erogeneous dose response function our estimator will have an unknown bias. Unfortunately, this

issue cannot be dealt with even with the assumption of a homogenous dose response function. To

see this, consider the following functional form

µ(Di) =


0 if Di < 1/2

6 if Di ∈ [1/2, 3/4)

24 if Di ∈ [3/4, 1)

(2)

This gives rise to a set of observed outcomes identical to that in (1), an as a result, the ATET

estimates in Table 3 will remain the same. While there may be a set of dose response functions

that only admit attenuation bias, it is troubling that an example that only takes on two values can

lead to bias of an unknown sign.

B.2 Full Dose Regression

70% of papers estimate a full dose regression, which is equivalent to the bivariate regression

∆Yi,t = α+ β ·Di +∆ϵi,t (3)

As Callaway et al. (2024) point out, interpreting β̂ in this model is difficult and varies across prac-

titioners. Of particular interest for our results is equation (3.1) which states

β̂ →p E[wbin
1 (Di)∆Yit|Di > E[Di]]− E[wbin

0 (Di)∆Yit|Di < E[Di]]

E[wbin
1 (Di)Di|Di > E[Di]]− E[wbin

0 (Di)Di|Di < E[Di]]
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where the weights are given by

wbin
1 (d) =

|d− E[Di]|

E

[
|Di − E[Di]|

∣∣∣∣Di > E[Di]

]
wbin
0 (d) =

|d− E[Di]|

E

[
|Di − E[Di]|

∣∣∣∣Di ≤ E[Di]

]

The full dose estimator recovers a Wald-like parameter, taking the difference between a weighted

average of the outcome above and below the mean, and scaling by the average distance in doses

between these two groups. The key issue for interpretation is that β̂ is not invariant to scaling of

the dose variable, through its impact on the denominator. In the appendix, we show it is always

possible to apply a transformation to the dose distribution so the denominator equals one

β̂scaled →p E[wbin
1 (Di)∆Yit|Di > E[Di]]− E[wbin

0 (Di)∆Yit|Di < E[Di]]

The full dose regression in (3) is thus similar to a binned design where the cutoff is chosen to be

the mean of the dose distribution. Scaling does not change “treatment” and “control” groups, nor

does it affect the weights. See appendix for details. Up to a linear transformation of the dose, these

estimators only vary in their choice of weights.
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