ECON 402 Exam 2 Review

Elird Haxhiu

University of Michigan

haxhiu@umich.edu

March 20, 2023

Business cycle fluctuations

- Three main goals
 - 1. Explain sources of "fluctuations" in output around trend growth (aka recessions/booms)
 - 2. Explain cyclicality and correlations between variables
 - 3. Study the effects of government policies aimed at "smoothing" the business cycle

Business cycle fluctuations

- Three main goals
 - 1. Explain sources of "fluctuations" in output around trend growth (aka recessions/booms)
 - 2. Explain cyclicality and correlations between variables
 - 3. Study the effects of government policies aimed at "smoothing" the business cycle
- Examples of government policies
 - 1. Fiscal policy = government spending G and taxation T (Congress)
 - 2. Monetary policy = regulate money supply M via changes to short-run interest rates r (or vice versa)
 - 3. Some other policy?

Investment Savings-Liquidity Preference Money Supply (IS-LM) model

Investment Savings (IS) curve, or goods market equilibrium: combination of (r, Y) that equates actual expenditures with planned ones

•
$$Y = C(Y - T) + I(r) + G$$

• $I(r) = Y - C(Y - T) - G := S$

•
$$I(r) = Y - C(Y - T) - G := S$$

Investment Savings-Liquidity Preference Money Supply (IS-LM) model

- (i) Investment Savings (IS) curve, or goods market equilibrium: combination of (r, Y) that equates actual expenditures with planned ones
 - Y = C(Y-T) + I(r) + G
 - I(r) = Y C(Y T) G := S
- (ii) Liquidity Preference Money Supply (LM) curve, or money market equilibrium: combination of (r, Y) that equates demand for money with given supply
 - $\left(\frac{M}{P}\right)_{D} = L(y, r + \pi_{E})$
 - $\bullet \qquad \left(\frac{M}{P}\right)_{S} = \overline{M}/\overline{P}$

Elird Haxhiu

ECON 402 Exam 2 Review

March 20, 2023

Investment Savings-Liquidity Preference Money Supply (IS-LM) model

- Investment Savings (IS) curve, or goods market equilibrium: combination of (r, Y) that equates actual expenditures with planned ones

 - Y = C(Y T) + I(r) + G• I(r) = Y C(Y T) G := S
- (ii) Liquidity Preference Money Supply (LM) curve, or money market equilibrium: combination of (r, Y) that equates demand for money with given supply
 - $\left(\frac{M}{P}\right)_D = L(y, r + \pi_E)$ $\left(\frac{M}{P}\right)_C = \overline{M}/\overline{P}$
- (iii) Short-run equilibrium, or aggregate demand (AD) curve: Y = f(P; M, other stuff)combination of (r, Y) that leads to equilibrium in the goods and money markets

Elird Haxhiu ECON 402 Exam 2 Review March 20, 2023

- Aggregate Demand (AD) curve, or short-run equilibrium
 - (IS-LM)

(simple)

Aggregate Supply-Aggregate Demand (AS-AD) model

- (i) Aggregate Demand (AD) curve, or short-run equilibrium
 - (IS-LM) Y = f(P; M, other stuff)• (simple) $Y = \frac{MV}{2}$
- (ii) Short-run Aggregate Supply (SRAS) curve from theories of nominal rigidity
 - (fully sticky) P = E[P]• (partial sticky) $P = E[P] + \frac{1}{\alpha}(Y - Y^*) + \varepsilon$

- (i) Aggregate Demand (AD) curve, or short-run equilibrium
 - (IS-LM)

$$Y = f(P; M, \text{other stuff})$$

 $Y = \frac{MV}{P}$

- (simple) $Y = \frac{1}{2}$
- (ii) Short-run Aggregate Supply (SRAS) curve from theories of nominal rigidity
 - (fully sticky) P = E[P]
 - (partial sticky) $P = E[P] + \frac{1}{\alpha}(Y Y^*) + \varepsilon$
- (iii) Long-run Aggregate Supply (LRAS) curve from flexible-price general equilibrium (GE)
 - (real side) $Y = Y^* = F(K, L^*; A)$

Elird Haxhiu ECON 402 Exam 2 Review

$$C = a + \frac{1}{2}(Y - T)$$

$$I = I_0 - 200 \cdot r$$

$$\frac{M}{P} = Y - 600 \cdot r$$

$$G = 10$$

$$T = 0$$

- A) Find (r, Y) if a = 10, $I_0 = 20$, M = 10, P = 1 assuming economy is at potential.
- B) If covid shock brings potential down to 50, and a = 5, $l_0 = 15$ what level of money M is needed bring output to new potential and keep prices stable?

$$15: Y = 60 - 400 r \Rightarrow 50 = 60 - 400 r \Rightarrow r = 0.025$$

$$L_{M}: \frac{M}{1} = 50 - 600 (0.025) \Rightarrow M = 35$$

Elird Haxhiu ECON 402 Exam 2 Review

view March 20, 2023

$$C = a + \frac{1}{2}(Y - T)$$

$$I = I_0 - 200 \cdot r$$

$$\frac{M}{P} = Y - 600 \cdot r$$

$$G = 10$$

$$T = 0$$

C) Suppose a = 5, $I_0 = 15$ still, but now potential back up to 52. What level of money is needed to get back to old potential now?

$$15:52 = 600 - 400-r \rightarrow r = 0.02$$

$$LM: \frac{M}{M} = 52 - 600.(0.02) \Rightarrow M = 40$$

Elird Haxhiu ECON 402 Exam 2 Review Mar

$$C = a + \frac{1}{2}(Y - T)$$

$$I = I_0 - 200 \cdot r$$

$$\frac{M}{P} = Y - 600 \cdot r$$

$$G = 10$$

$$T = 0$$

- C) Suppose a = 5, $I_0 = 15$ still, but now potential back up to 52. What level of money is needed to get back to old potential now?
- D) Suppose everything back to normal (potential at 52, $a = 10, I_0 = 20$) except money now at 40 from part c. Find long-run price level.

$$V = 0.67$$
 } $\frac{40}{P} = 52 - 600 (0.07) \Rightarrow P = 4$

Elird Haxhiu ECON 402 Exam 2 Review March 20, 2023

Age of "easy money" documentary, Frontline (2023)

$$\pi=\pi_E+rac{Y-Y^*}{Y^*}=\pi_E+y$$
 $u_N=0.03$
Okun's law $u\uparrow 1\%$ \Rightarrow $y\downarrow 2\%$

A) Derive the Phillips curve.
$$T = T_E + Y$$

$$= T_E - 2(U - V_N)$$

$$= T_E - 2(U - 0.03)$$

Elird Haxhiu ECON 402 Exam 2 Review March 20, 2023

Question 2
$$\pi = \pi_E + \frac{Y - Y^*}{Y^*} = \pi_E + y$$

$$u_N = 0.03$$
Okun's law
$$u \uparrow 1\% \Rightarrow y \downarrow 2\%$$
A) Derive the Phillips curve.

$$\pi = \pi_E + \frac{Y - Y^*}{Y^*} = \pi_E + y$$

$$u_N = 0.03$$
Okun's law
$$u \uparrow 1\% \implies v \downarrow 2\%$$

Jeremy Rudd (2021)

9/9

- A) Derive the Phillips curve.
- B) Find the path of $\{\pi,y\}$ over the first three periods if policy-makers wish to keep u=0.02, expectations are adaptive, and assuming $\pi_E=0.02$ in the first period.
- C) Illustrate this in AS-AD diagram.

D) What if the public expects this behavior?

-> Y= 0/, higher

rational expectations! (make correct predictions about pi... instead of adaptive)