ECON 402 Discussion: Week 1

Elird Haxhiu

University of Michigan haxhiu@umich.edu

January 13, 2023

1/10

Announcements

- Elird Haxhiu
- haxhiu@umich.edu
- Lorch Hall M101 (Mezzanine)
- Discussion: Thursdays at 12pm, Mason Hall 1469
- Office hours: Fridays at 3pm 5pm, Lorch Hall M101
- How to get the most out of this?
- Topics today
 - 1. Growth rates
 - 2. Production functions
 - 3. Profit maximization

Economics: study allocation of scarce resources

- Better: study human behavior as decisions made by individuals who maximize objective functions, constrained by budget sets and subject to equilibrium conditions... sometimes
 - Why sometimes? Partial versus General Equilibrium (GE)
 - And hence, one distinction between Micro and Macroeconomics
- We study different definitions of GE, and the implied restrictions on the evolution of macroeconomic variables like output Y_t , wages w_t , investment spending I_t , or the aggregate saving rate $s \in (0,1)$
- A theory is simply an implied restriction on the data... aka prediction
- Empirics: use econometrics to test predictions, given id assump
- We'll do the first part!

Growth Rates

• Let x_t be some economic variable measured in discrete time $t \in \mathbb{N}$. The net growth rate g_{x} and gross growth rate G_{x} are defined as

- Example: Let Y_t denote GDP per capita in the United States. Then we usually have $g_Y = 0.03$ and $G_Y = 1.03$. (Careful with decimal versus percent notation!)
- Note: In continuous time, let $g_x := \frac{\dot{x}_t}{x_t}$ where $\dot{x}_t = \frac{d}{dt}x_t$.

Flird Haxhiu 4 / 10 **FCON 402 Discussion** January 13, 2023

Growth Rates

• If g_x is constant over time, then we can write

$$x_{t+1} = (1 + g_x)x_t = G_x x_t$$

$$\Rightarrow x_{t+n} = (1 + g_x)^n x_t = G_x^n x_t$$

- Example: Prove that $g_x \approx \ln x_{t+1} \ln x_t$ if g_x if sufficiently small.
- Proof: In discrete time, we have

$$\ln x_{t+1} - \ln x_t = \ln \left(\frac{x_{t+1}}{x_t} \right) = \ln \left(\frac{(1+g_x)x_t}{x_t} \right) = \ln(1+g_x) \approx g_x$$

by Taylor's approximation theorem. In continuous time, no longer an approximation since

$$\frac{d}{dt}\ln x_t = \frac{1}{x_t}\frac{d}{dt}x_t = \frac{\dot{x}_t}{x_t} = g_X$$

Elird Haxhiu ECON 402 Discussion January 13, 2023 5/10

Growth Rates

- Example: If x_t grows at constant rate g_x , find the growth rate of the variable $y_t := Ax_t^B$ where $A, B \in \mathbb{R}$.
- \bullet Solution: Given the definition of y_t , take logs and differentiate with respect to time

$$y_t = Ax_t^B$$

$$\ln y_t = \ln \left(Ax_t^B\right) = \ln A + B \ln x_t$$

$$\frac{d}{dt} \left[\ln y_t\right] = \frac{d}{dt} \left[\ln A + B \ln x_t\right]$$

$$\frac{\dot{y}_t}{y_t} = 0 + B \frac{\dot{x}_t}{x_t}$$

$$g_y = Bg_x$$

General principal: log differentiate a variable with respect to time to find its growth rate!

Elird Haxhiu ECON 402 Discussion January 13, 2023 6/10

Production Functions

- Let Y_t denote output, K_t denote the capital input, and L_t denote the labor input. Then $F: \mathbb{R}^3_+ \to \mathbb{R}$ is a production function if $Y_t := F(K_t, L_t, A)$, where A > 0 is constant.
- Neoclassical assumptions on production
 - 1. [Continuity] F is continuous and (twice) differentiable
 - 2. [Marginal Products > 0] $F_K := \frac{\partial}{\partial K} F > 0$ and $F_L := \frac{\partial}{\partial L} F > 0$
 - 3. [MPs diminishing] $F_{KK}:=\frac{\partial^2}{\partial K^2}F<0$ and $F_{LL}:=\frac{\partial^2}{\partial L^2}F<0$
 - 4. [Constant Returns to Scale] For all $\lambda > 0$, we have $F(\lambda K_t, \lambda L_t, A) = \lambda F(K_t, L_t)$

Elird Haxhiu ECON 402 Discussion January 13, 2023 7/10

Cobb-Douglas Production Functions

- $Y_t = AK_t^{\alpha}L_t^{\beta}$ for constant $\alpha > 0$ and $\beta > 0...$ it's very famous!
- Example: For which values of $\alpha > 0$ and $\beta > 0$ does the Cobb Douglas production function exhibit constant returns to scale (CRS)?
- Solution: We start by scaling all factors by a constant

$$F(\lambda K_t, \lambda L_t, A) = A(\lambda K_t)^{\alpha} (\lambda L_t)^{\beta}$$
$$= \lambda^{\alpha+\beta} A K_t^{\alpha} L_t^{\beta}$$
$$= \lambda F(K_t, L_t, A)$$

if and only if $\alpha + \beta = 1$

- Normalizing $\alpha + \beta = 1$ is a standard assumption precisely because we want CRS!
- Cobb-Douglas production functions also satisfy the other three neoclassical assumptions.
 You should be able to prove them!

Elird Haxhiu ECON 402 Discussion January 13, 2023

8 / 10

Profit Maximization Example

Suppose there exists a representative firm in the economy with Cobb-Douglas production function $Y_t = K_t^{\alpha} L_t^{1-\alpha}$ for $\alpha \in (0,1)$ and output price P normalized to 1.

a) Write out the firm's long-run profit function.

$$\pi(K_t, L_t) = P \cdot F(K_t, L_t) - R_t \cdot K_t - w_t \cdot L_t$$

= $K_t^{\alpha} L_t^{1-\alpha} - R_t K_t - w_t L_t$

b) Write out the firm's short-run profit function assuming capital is fixed at \overline{K} .

$$\pi(\overline{K}, L_t) = P \cdot F(\overline{K}, L_t) - R_t \cdot \overline{K} - w_t \cdot L_t$$
$$= \overline{K}^{\alpha} L_t^{1-\alpha} - R_t \overline{K} - w_t L_t$$

Elird Haxhiu ECON 402 Discussion January 13, 2023 9 / 10

Next Week

c) Solve the firm's profit maximization problem in the short-run, where capital is fixed at some level \overline{K} . What is the wage rate? What is the labor demand (LD) curve? What shifts LD exogenously?

d) Find the long-run optimal capital-labor ratio $k_t := \frac{K_t}{L_t}$ by solving the firm's profit maximization problem. (Note: why can't we solve for unique values or capital K_t and labor L_t that are optimal in the long-run in this case?)

10 / 10