ECON 402 Discussion: Week 3

Elird Haxhiu

University of Michigan haxhiu@umich.edu

January 26, 2023

Announcements

- Homework 1 grades coming soon... always compare solutions to your answers!
- Goal is create your own running study guide with practice questions for exams
- Topics today
 - 1. Market for loan-able funds
 - 2. Review homework 1
 - 3. Solow model of growth

Some important things to know...

- 1. Graph capital and labor markets under perfect competition (and fixed supply)
- 2. Relate wages and rental rates on capital to production function derivatives (supply side)
- 3. Divide up total output between factors under constant returns to scale
- 4. Specify consumption and investment as functions of real interest rate (demand side)
- 5. Connect goods market clearing (Y = C + I + G) and investment savings (I = S) identities

Some important things to know...

- 1. Graph capital and labor markets under perfect competition (and fixed supply)
- 2. Relate wages and rental rates on capital to production function derivatives (supply side)
- 3. Divide up total output between factors under constant returns to scale
- 4. Specify consumption and investment as functions of real interest rate (demand side)

$$C_t = C(Y_t - T_t, r)$$
 where $\frac{\partial C}{\partial r} < 0$
 $I_t = I(r)$ where $\frac{\partial I}{\partial r} < 0$ follows MPK $-\delta \cdot \frac{P_K}{P} = r \cdot \frac{P_K}{P}$

5. Connect goods market clearing (Y = C + I + G) and investment savings (I = S) identities

Elird Haxhiu ECON 402 Discussion January 26, 2023 4/10

Some important things to know...

- 1. Graph capital and labor markets under perfect competition (and fixed supply)
- 2. Relate wages and rental rates on capital to production function derivatives (supply side)
- 3. Divide up total output between factors under constant returns to scale
- 4. Specify consumption and investment as functions of real interest rate (demand side)
- 5. Connect goods market clearing (Y = C + I + G) and investment savings (I = S) identities

$$Y = C + I + G$$

$$Y - C - G = I$$

$$S = I$$

Putting it all together = short-run equilibrium

Neoclassical model has 4 equations for 4 endogenous variables: Y, C, I, r

$$Y = F(K, L)$$

$$Y = C + I + G$$

$$C = C(Y - T, r)$$

$$I = I(r)$$

Putting it all together = short-run equilibrium

Neoclassical model has 4 equations for 4 endogenous variables: Y, C, I, r

$$Y = F(K, L)$$

$$Y = C + I + G$$

$$C = C(Y - T, r)$$

$$I = I(r)$$

The market for loan-able funds is just another way of expressing the goods market clearing condition! Note that aggregate (desired) savings depend positively on the interest rate

$$S(r) = Y - C - G$$

= $Y - C(Y - T, r) - G$
= $F(K, L) - C(F(K, L) - T, r) - G$

while aggregate (desired) investment I(r) depends negatively on $r \Rightarrow$ unique solution r^*

Elird Haxhiu ECON 402 Discussion January 26, 2023

Shifting curves and changing equilibrium

EX1: Contrast the effects of immigration shocks on labor vs capital markets.

EX2: What does technological innovation do to short-run interest rates?

EX3: How does government spending via borrowing affect availability of loan-able funds?

Review Homework 1

- Production: $Y_t = A_t \cdot K_t^{\alpha} L_t^{1-\alpha}$ with $\alpha \in (0,1)$
- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$

- Production: $Y_t = A_t \cdot K_t^{\alpha} L_t^{1-\alpha}$ with $\alpha \in (0,1)$
- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Behavioral assumption about saving
 - $I_t = sY_t$ where $s \in (0,1)$ is exogenous
 - $C_t = (1-s)Y_t$

- Production: $Y_t = A_t \cdot K_t^{\alpha} L_t^{1-\alpha}$ with $\alpha \in (0,1)$
- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Behavioral assumption about saving
 - $I_t = sY_t$ where $s \in (0,1)$ is exogenous
 - $C_t = (1-s)Y_t$
- Laws of motion for inputs
 - $\Delta K_t = I_t \delta K_t$ where $\delta \in (0,1)$
 - $L_{t+1} = (1+n)L_t > 0$ for all t

- Production: $Y_t = A_t \cdot K_t^{\alpha} L_t^{1-\alpha}$ with $\alpha \in (0,1)$
- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Behavioral assumption about saving
 - $I_t = sY_t$ where $s \in (0,1)$ is exogenous
 - $C_t = (1-s)Y_t$
- Laws of motion for inputs
 - $\Delta K_t = I_t \delta K_t$ where $\delta \in (0,1)$
 - $L_{t+1} = (1+n)L_t > 0$ for all t
- ullet Per capita quantities: $k_t=rac{K_t}{L_t}$, $y_t=rac{Y_t}{L_t}$, and $c_t=rac{C_t}{L_t}$
- Input prices (under perfect competition): $R_t = MPK$ and $w_t = MPL$

Example: The Golden Rule

- Assuming no technology $(A_t = 0 \ \forall t)$ and non population growth (n = 0), what level of saving maximizes consumption per capita in steady state $(\Delta k_t = 0)$?
- 1. Find the law of motion for the capital-labor ratio k_t
- 2. Find the steady state capital-labor ratio k_* where $\Delta k_t = 0$
- 3. Find consumption per capita in steady state c_*
- 4. Solve the first-order condition (FOC) $\frac{\partial}{\partial s}c_*(s)=0$ for optimal s