ECON 402 Discussion: Week 4

Elird Haxhiu

University of Michigan haxhiu@umich.edu

February 2, 2023

1/11

Announcements

- Homework 1 solutions posted
- Homework 2 due Friday February 3rd @ 6pm
- Exam 1 on Wednesday February 8th @ 6pm (2 locations, check Canvas)
- Topics = macro data, general equilibrium (GE) model, and Solow model
- Topics today
 - 1. Recap basic GE model
 - 2. Golden rule saving rate
 - 3. Solow model with technology + population growth
 - 4. Accounting for growth with Cobb-Douglas

Neoclassical Production Functions Y = F(K, L)

1. [Continuity]

F is continuous and twice differentiable

2. [Marginal Products > 0]

 $F_K:=rac{\partial}{\partial K}F>0$ and $F_L:=rac{\partial}{\partial I}F>0$

3. [MPs diminishing]

- $F_{KK} := \frac{\partial^2}{\partial K^2} F < 0$ and $F_{LL} := \frac{\partial^2}{\partial L^2} F < 0$
- 4. [Constant Returns to Scale]
- For all $\lambda > 0$, we have $F(\lambda \cdot K, \lambda \cdot L) = \lambda \cdot F(K, L)$

3/11

5. [Factor Complementarity]

 $\frac{\partial}{\partial K} \textit{MPL} > 0$ and $\frac{\partial}{\partial L} \textit{MPK} > 0$

"Short-run" General Equilibrium (GE) model

4 equations for 4 endogenous variables: Y, C, I, r

$$Y = F(K, L)$$

$$Y = C + I + G$$

$$C = C(Y - T, r)$$

$$I = I(r)$$

 $\label{eq:market} \textit{Market for loan-able funds} = \textit{another way of expressing the goods market clearing condition!}$

$$S(r) = Y - C - G$$

= $Y - C(Y - T, r) - G$
= $F(K, L) - C(F(K, L) - T, r) - G$

Note that aggregate (desired) savings depend positively on the interest rate while aggregate (desired) investment I(r) depends negatively on $r \Rightarrow$ unique solution r^*

Elird Haxhiu ECON 402 Discussion February 2, 2023 4/11

Predictions from the GE model

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

EX1: Contrast the effects of immigration shocks on labor vs capital markets.

EX2: What does technological innovation do to short-run interest rates?

EX3: How does government spending via borrowing affect availability of loan-able funds?

See homework 1 solutions for details!

Basic Solow model of economic growth

- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Production: $Y_t = K_t^{\alpha} L_t^{1-\alpha}$ with $\alpha \in (0,1)$
- Input prices: $R_t = MPK_t$ and $w_t = MPL_t$
- Behavioral assumption about saving
 - $I_t = s \cdot Y_t$ where $s \in (0,1)$ is exogenous
 - $C_t = (1-s) \cdot Y_t$
- Law of motion for capital input
 - $\Delta K_t = I_t \delta \cdot K_t$ where $\delta \in (0,1)$
- ullet Per capita quantities: $k_t=rac{K_t}{L_t}$, $y_t=rac{Y_t}{L_t}$, and $c_t=rac{C_t}{L_t}$

Example: The Golden Rule

What level of saving maximizes consumption per capita in steady state ($\Delta k_t = 0$)?

- 1. Find the law of motion for the capital-labor ratio k_t
- 2. Find the steady state capital-labor ratio k_* where $\Delta k_t = 0$
- 3. Find consumption per capita in steady state c_*
- 4. Prove that with Cobb-Douglas production, the optimal saving rate is equal to $\alpha \in (0,1)$ by solving the first-order condition (FOC) $\frac{\partial}{\partial s}c_*(s)=0$ for optimal s
- 5. Show graphically that the optimal saving rate implies $MPK = \delta$. Hint: in steady-state we must have $sf(k_t) = \delta k_t$ so that $c_t := (1 s)y_t = f(k_t) \delta k_t$.

Elird Haxhiu ECON 402 Discussion February 2, 2023 7 / 11

Solow model with technology and population growth

- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- ullet Production, with labor-augmenting technology: $Y_t = K_t^{lpha}(E_t \cdot L_t)^{1-lpha}$ with $lpha \in (0,1)$
- Input prices: $R_t = MPK_t$ and $w_t = MPL_t$
- Behavioral assumption about saving
 - $I_t = s \cdot Y_t$ where $s \in (0,1)$ is exogenous
 - $C_t = (1-s) \cdot Y_t$
- Laws of motion for capital, labor, and technical progress
 - $\Delta K_t = I_t \delta \cdot K_t$ where $\overline{\delta \in (0,1)}$
 - $L_{t+1} = (1+n) \cdot L_t > 0$ for all t
 - $E_{t+1} = (1+g) \cdot E_t > 0$ for all t
- Per capita quantities, intensive form: $k_t = \frac{K_t}{E_t \cdot L_t}$, $y_t = \frac{Y_t}{E_t \cdot L_t}$, and $c_t = \frac{C_t}{E_t \cdot L_t}$

8/11

Golden rule with technology and population growth

Allowing for technical progress (g > 0) and positive population growth (n > 0), what level of saving maximizes consumption per capita in steady state $(\Delta k_t = 0)$?

- 1. Find the law of motion for the intensive form capital-labor ratio k_t
- 2. Find the steady state intensive form capital-labor ratio k_* where $\Delta k_t = 0$
- 3. Find golden rule saving rate implied by the $MPK = \delta$ optimality condition. How does this optimal saving rate compare to the case where g = n = 0?

Technical progress = growth not due to K or L

Solow model does not explain where technical progress comes from; only makes predictions for other macro variables based on the assumption it exists... ("black box" approach)

Under constant returns to scale and perfect competition, consider small changes Δ

$$Y = MPK \cdot K + MPL \cdot L$$

$$\frac{\Delta Y}{Y} = MPK \cdot \frac{\Delta K}{Y} + MPL \cdot \frac{\Delta L}{Y}$$

$$\frac{\Delta Y}{Y} = \frac{MPK \cdot K}{Y} \cdot \frac{\Delta K}{K} + \frac{MPL \cdot L}{Y} \cdot \frac{\Delta L}{L}$$

$$g_{Y} = \frac{MPK \cdot K}{Y} \cdot g_{K} + \frac{MPL \cdot L}{Y} \cdot g_{L}$$

$$g_{Y} = \alpha g_{K} + (1 - \alpha)g_{L}$$

where $\alpha \in (0,1)$ denotes the capital share (same as Cobb-Douglas specification $Y = K^{\alpha}L^{1-\alpha}$)

Elird Haxhiu ECON 402 Discussion February 2, 2023 10 / 11

Technical progress = growth not due to K or L

Define technical growth as excess growth in output not due to growth in machines or people

$$g_Y = \alpha g_K + (1 - \alpha)g_L$$

 $g_A := g_Y - \alpha g_K - (1 - \alpha)g_L$

to the extent that true equality does not hold in real data

Some important things I want you to know

- 1. This definition hints at the weird Neoclassical idea that technology can also regress (α -weighted growth in K and L exceeds growth in Y) as in the RBC model... stay tuned!
- 2. This formulation assumes "factor neutral" technology in the production function such as $Y = A \cdot K^{\alpha} L^{1-\alpha}$ instead of "labor augmenting" like we specified in the Solow model $Y = K^{\alpha} (E \cdot L)^{1-\alpha}$, but this changes nothing

11 / 11