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• log 𝑌𝑖 ≥ 0 denotes log earnings (outcome)

• 𝑆𝑖 ∈ {0,1} is whether 𝑖 finished college (treatment)

• 𝑈𝑖 is unobserved error term (ex: ability)

• simple linear population regression function (PRF) log 𝑌𝑖 = 𝛼 + 𝛽 ⋅ 𝑆𝑖 + 𝑈𝑖

• 𝛽 ≈ Mincer (1972) returns to college

Mincer (1972) regression framework
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• Potential outcomes + treatment effects ATE ≔ 𝐸[log 𝑌𝑖(1) − log 𝑌𝑖(0)]

• Need independence to identify ATE with 𝑆𝑖 ⊥ log 𝑌𝑖 1 , log 𝑌𝑖(0)

simple comparison, which is given by ⇔ 𝐸 𝑈𝑖 𝑆𝑖 = 𝐸 𝑈𝑖 = 0

መ𝛽𝑂𝐿𝑆
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𝑁0
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Why use multiple (vs simple) linear regression?

• Multiple regression: we can get closer to satisfying the hypothetical 

(but necessary, and luckily also sufficient assumption known as) 

random assignment/independence by conditioning on some observable 

characteristics 𝑋𝑖 (provocative example: IQ test score)
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Why use multiple (vs simple) linear regression?

• Multiple regression: we can get closer to satisfying the hypothetical 

(but necessary, and luckily also sufficient assumption known as) 

random assignment/independence by conditioning on some observable 

characteristics 𝑋𝑖 (provocative example: IQ test score)

log 𝑌𝑖 = 𝛼 + 𝛽 ⋅ 𝑆𝑖 + 𝛿 ⋅ 𝑋𝑖 + 𝑈𝑖

𝑆𝑖 ⊥ log 𝑌𝑖 1 , log 𝑌𝑖 0 |𝑋𝑖
⇔ 𝐸 𝑈𝑖 𝑆𝑖 , 𝑋𝑖 = 0

• Inclusion of 𝑋𝑖 allows us to “control” for any reasons why there may not be truly 
random assignment of treatment (in simple PRF) 7



Omitted variable bias (OVB)

“True” model log 𝑌𝑖 = 𝛼 + 𝛽 ⋅ 𝑆𝑖 + 𝛿 ⋅ 𝑋𝑖 + 𝑈𝑖 Cov 𝑆𝑖 , 𝑈𝑖 = 0

Our model log 𝑌𝑖 = 𝑎 + 𝑏 ⋅ 𝑆𝑖 + 𝐸𝑖
Auxiliary model 𝑋𝑖 = 𝑐 + 𝜸 ⋅ 𝑆𝑖 + 𝜂𝑖

By (naively) assuming Cov 𝑆𝑖 , 𝐸𝑖 = 0 in our model, the population value of slope is

𝑏 =
Cov(𝑆𝑖 , log 𝑌𝑖)

Var 𝑆𝑖
=
Cov(𝑆𝑖 , 𝛼 + 𝛽 ⋅ 𝑆𝑖 + 𝛿 ⋅ 𝑋𝑖 + 𝑈𝑖)

Var 𝑆𝑖

=
Cov(𝑆𝑖 , 𝛼) + Cov(𝑆𝑖 , 𝛽𝑆𝑖) + Cov(𝑆𝑖 , 𝛿𝑋𝑖) + Cov(𝑆𝑖 , 𝑈𝑖)

Var 𝑆𝑖

=
𝛽 ⋅ Var 𝑆𝑖 + 𝛿 ⋅ Cov(𝑆𝑖 , 𝑋𝑖)

Var 𝑆𝑖
= 𝛽 + 𝛿 ⋅

Cov 𝑆𝑖 , 𝑋𝑖
Var 𝑆𝑖

= 𝛽 + 𝛿 ⋅ 𝜸
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Assumptions
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• MLR1 (linear outcome model) 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

• MLR2 (random sampling) {𝑌𝑖 , 𝑋𝑖1, … , 𝑋𝑖𝑘}𝑖=1
𝑁 is random draw

• MLR3 (no collinearity) no 𝑋𝑖𝑗 linear function of any other 𝑋𝑖𝑙
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⇒ 𝑌𝑖~𝑁(𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 , 𝜎
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Ordinary Least Squares (OLS) Estimator

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

min
{𝛽0,𝛽1,…,𝛽𝑘}

1

𝑁
෍

𝑖=1

𝑁

𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖1 −⋯− 𝛽𝑘𝑋𝑖𝑘
2

⇒ መ𝛽𝑗
𝑂𝐿𝑆 =

෣Cov ෨𝑋𝑖𝑗,𝑌𝑖
෢Var ෨𝑋𝑖𝑗

∀𝑗 = {0,1, … , 𝑘}

=
෢Cov 𝑋𝑖𝑗 − መ𝜃1𝑋𝑖1 −⋯− መ𝜃𝑘𝑋𝑖𝑘 , 𝑌𝑖
෢Var 𝑋𝑖𝑗 − መ𝜃1𝑋𝑖1 −⋯− መ𝜃𝑘𝑋𝑖𝑘
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19
by Frisch, Waugh, and Lovell (FWL) <3



OLS Results 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

• T1 (unbiased) MLR1+2+3+4 ⇒ 𝐸 ෡𝛽𝑗
𝑂𝐿𝑆

= 𝛽𝑗 ∀𝑗 = {0,1, … , 𝑘}
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(Gauss-Markov) Var ෡𝛽𝑗
𝑂𝐿𝑆

≤ Var ෡𝛽𝑗
other linear

Var ෡𝛽𝑗
𝑂𝐿𝑆

=
𝜎2

Var 𝑋𝑖𝑗 ⋅ 1−𝑅reg 𝑋𝑗 on all 𝑋𝑘
2

𝐸 ො𝜎2 = 𝐸
1

𝑁−𝑘−1
σ𝑖=1
𝑁 ෡𝑈𝑖

2 = 𝜎2

se ෡𝛽𝑗
𝑂𝐿𝑆

≔ ෢Var ෡𝛽𝑗
𝑂𝐿𝑆

22



OLS Results 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

• T3 (efficient)  MLR1+2+3+4+5+6 ⇒ ෡𝛽𝑗
𝑂𝐿𝑆

~𝑁 𝛽𝑗 , Var 𝛽𝑗 ∀𝑗 = {0,1, … , 𝑘}

(Classical)
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OLS Results 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

• T3 (efficient)  MLR1+2+3+4+5+6 ⇒ ෡𝛽𝑗
𝑂𝐿𝑆

~𝑁 𝛽𝑗 , Var 𝛽𝑗 ∀𝑗 = {0,1, … , 𝑘}

(Classical)

෢𝛽𝑗
𝑂𝐿𝑆

−𝛽𝑗

sd[𝛽𝑗]
~ 𝑁(0,1)

෢𝛽𝑗
𝑂𝐿𝑆

−𝛽𝑗

se[𝛽𝑗]
~ 𝑡(𝑁 − 𝑘 − 1)

se ෡𝛽𝑗
𝑂𝐿𝑆

≔ ෢Var ෡𝛽𝑗
𝑂𝐿𝑆
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t and F tests 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

• Individual hypothesis test about slope parameter (t-test)

𝐻0: 𝛽𝑗 = 0 𝑡෢𝛽𝑗
𝑂𝐿𝑆 ≔

෢𝛽𝑗
𝑂𝐿𝑆

−0

se ෢𝛽𝑗
𝑂𝐿𝑆 ~ 𝑡(𝑁 − 𝑘 − 1)
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t and F tests 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑈𝑖

• Individual hypothesis test about slope parameter (t-test)

𝐻0: 𝛽𝑗 = 0 𝑡෢𝛽𝑗
𝑂𝐿𝑆 ≔

෢𝛽𝑗
𝑂𝐿𝑆

−0

se ෢𝛽𝑗
𝑂𝐿𝑆 ~ 𝑡(𝑁 − 𝑘 − 1)

• Joint hypothesis test about entire linear model

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 𝐹 ≔
𝑆𝑆𝑅𝑅−𝑆𝑆𝑅𝑈

𝑘
𝑆𝑆𝑅𝑅
𝑁−𝑘−1

~ 𝐹(𝑘, 𝑁 − 𝑘 − 1)
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𝑆𝑆𝑅𝑈 ≔෍

𝑖=1

𝑁

෡𝑈𝑖
2
=෍

𝑖=1

𝑁

𝑌𝑖 − ෠𝑌𝑖
2

𝑆𝑆𝑅𝑅 ≔෍

𝑖=1

𝑁

𝑌𝑖 − ෠𝛽0
2



Confidence Intervals 

𝑃 ෡𝛽𝑗
𝑂𝐿𝑆

− 𝑐𝛼 ⋅ se ෡𝛽𝑗
𝑂𝐿𝑆

≤ 𝛽𝑗 ≤ ෡𝛽𝑗
𝑂𝐿𝑆

+ 𝑐𝛼 ⋅ se ෡𝛽𝑗
𝑂𝐿𝑆

= 1 − 𝛼

significance level (rate we tolerate Type 1 errors)  𝛼 ∈ {0.01,0.05,0.1}

critical value associated w/ 𝛼 in distribution 𝑐𝛼 ≈ 1.96 if 5%

estimated standard error se ෡𝛽𝑗
𝑂𝐿𝑆

≔ ෢Var ෡𝛽𝑗
𝑂𝐿𝑆

interpretation = ???
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Confidence Intervals 

𝑃 ෡𝛽𝑗
𝑂𝐿𝑆

− 𝑐𝛼 ⋅ se ෡𝛽𝑗
𝑂𝐿𝑆

≤ 𝛽𝑗 ≤ ෡𝛽𝑗
𝑂𝐿𝑆

+ 𝑐𝛼 ⋅ se ෡𝛽𝑗
𝑂𝐿𝑆

= 1 − 𝛼

significance level (rate we tolerate Type 1 errors)  𝛼 ∈ {0.01,0.05,0.1}

critical value associated w/ 𝛼 in distribution 𝑐𝛼 ≈ 1.96 if 5%

estimated standard error se ෡𝛽𝑗
𝑂𝐿𝑆

≔ ෢Var ෡𝛽𝑗
𝑂𝐿𝑆

interpretation = this procedure to estimate bounds will cover true 𝛽𝑗 parameter

95% of the time (over many hypothetical repeated samples)
28


