ECON 402 Discussion: Week 5 (problems)

Elird Haxhiu

University of Michigan haxhiu@umich.edu

June 3, 2022

Announcements

- Topics today
 - 1. Introduction
 - 2. Open economy IS-LM
 - 3. Real business cycle (RBC) model

Introduction

- We studied short and long run equilibria in the IS-LM and AS-AD framework and the role for government policy in responding to fluctations (aka recessions).
- Today we extend this task in two important directions.
- First, we consider these "old school" macro models in the context of a small open economy (SOE), where the interest rate is fixed.

Introduction

- We studied short and long run equilibria in the IS-LM and AS-AD framework and the role for government policy in responding to fluctations (aka recessions).
- Today we extend this task in two important directions.
- First, we consider these "old school" macro models in the context of a small open economy (SOE), where the interest rate is fixed.
- Second, we return to our "grown up" macro models and consider implications of adding labor supply to the dynamic consumption decision. The result is the famous RBC model...
- Things will get weird because although RBC provides a clear explanation for recessions, it implies no role for government policy...

- Example: Solve the open economy model described by
 - Money demand: $\left(\frac{M}{P}\right)_D = Y_t 1000r_t$.
 - Money supply: $\left(\frac{M}{P}\right)_S = 1000$.
 - Investment demand: $I(r_t) = 200 1000r_t$.
 - Consumption: $C_t = 0.6(Y_t \overline{T})$.

- Example: Solve the open economy model described by
 - Money demand: $\left(\frac{M}{P}\right)_D = Y_t 1000r_t$.
 - Money supply: $\left(\frac{M}{P}\right)_S = 1000$.
 - Investment demand: $I(r_t) = 200 1000r_t$.
 - Consumption: $C_t = 0.6(Y_t \overline{T})$.
 - Net export demand: $NX(e_t) = 100 + 100e_t$, where

$$e_t := rac{\$_{\mathit{US}}}{\$_{\mathit{FOR}}}$$

is the nominal exchange rate. Why is $NX'(e_t) > 0$?

- Government: $\overline{G} = \overline{T} = 0$
- World interest rate: $r^* = 0.05$

- Part a: Derive the IS curve.
- Solution:

$$Y_t \stackrel{!}{=} C_t + I_t + G_t + NX_t$$

- Part a: Derive the IS curve.
- Solution:

$$Y_t \stackrel{!}{=} C_t + I_t + G_t + NX_t$$
 $Y_t = 0.6(Y_t - \overline{T}) + 200 - 1000r_t + \overline{G} + 100 + 100e_t$
 $Y_t = 0.6(Y_t - 0) + 200 - 1000(0.05) + 0 + 100 + 100e_t$
 $Y_t = 625 + 250e_t$
or $e_t = \frac{1}{250}Y_t + \frac{625}{250}$ for graphing!

Elird Haxhiu ECON 402 Discussion June 3, 2022 5 / 16

- Part a: Derive the IS curve.
- Solution:

$$Y_t \stackrel{!}{=} C_t + I_t + G_t + NX_t$$
 $Y_t = 0.6(Y_t - \overline{T}) + 200 - 1000r_t + \overline{G} + 100 + 100e_t$
 $Y_t = 0.6(Y_t - 0) + 200 - 1000(0.05) + 0 + 100 + 100e_t$
 $Y_t = 625 + 250e_t$
or $e_t = \frac{1}{250}Y_t + \frac{625}{250}$ for graphing!

- Part b: Derive the LM curve.
- Solution:

$$\left(\frac{M}{P}\right)_D \stackrel{!}{=} \left(\frac{M}{P}\right)_S$$

- Part a: Derive the IS curve.
- Solution:

$$Y_t \stackrel{!}{=} C_t + I_t + G_t + NX_t$$
 $Y_t = 0.6(Y_t - \overline{T}) + 200 - 1000r_t + \overline{G} + 100 + 100e_t$
 $Y_t = 0.6(Y_t - 0) + 200 - 1000(0.05) + 0 + 100 + 100e_t$
 $Y_t = 625 + 250e_t$
or $e_t = \frac{1}{250}Y_t + \frac{625}{250}$ for graphing!

- Part b: Derive the LM curve.
- Solution:

$$\left(\frac{M}{P}\right)_{D} \stackrel{!}{=} \left(\frac{M}{P}\right)_{S}$$

$$1000 = Y_{t} - 1000(0.05)$$

$$Y_{t} = 1050$$

5 / 16

Elird Haxhiu ECON 402 Discussion June 3, 2022

- Part c: Find the short run equilibrium.
- Solution:

$$IS \stackrel{!}{=} LM$$

$$625 + 250e_t = 1050$$

- Part c: Find the short run equilibrium.
- Solution:

$$IS \stackrel{!}{=} LM$$

$$625 + 250e_t = 1050$$

$$\Rightarrow e^* = 1.7$$

$$Y^* = 1050$$

• Part d: How does the short run equilibrium change when the government decides to increase spending to $\overline{G}' = 100$?

- Part d: How does the short run equilibrium change when the government decides to increase spending to $\overline{G}'=100$?
- Solution: The new IS curve is given by

$$Y_t = 0.6(Y_t - \overline{T}) + 200 - 1000r_t + \overline{G} + 100 + 100e_t$$

 $Y_t = 0.6(Y_t - 0) + 200 - 1000(0.05) + 100 + 100 + 100e_t$
 $Y_t = 875 + 250e_t$

Elird Haxhiu ECON 402 Discussion June 3, 2022 7 / 16

- Part d: How does the short run equilibrium change when the government decides to increase spending to $\overline{G}' = 100$?
- Solution: The new IS curve is given by

$$\begin{array}{lcl} Y_t & = & 0.6(Y_t - \overline{T}) + 200 - 1000r_t + \overline{G} + 100 + 100e_t \\ Y_t & = & 0.6(Y_t - 0) + 200 - 1000(0.05) + 100 + 100 + 100e_t \\ Y_t & = & 875 + 250e_t \end{array}$$

which implies that

$$IS \stackrel{!}{=} LM$$

$$875 + 250e_t = 1050$$

$$\Rightarrow e^{**} = 0.7$$

$$Y^{**} = 1050$$

Elird Haxhiu ECON 402 Discussion June 3, 2022 7/16

- Part d: How does the short run equilibrium change when the government decides to increase spending to $\overline{G}' = 100$?
- Solution: The new IS curve is given by

$$Y_t = 0.6(Y_t - \overline{T}) + 200 - 1000r_t + \overline{G} + 100 + 100e_t$$

$$Y_t = 0.6(Y_t - 0) + 200 - 1000(0.05) + 100 + 100 + 100e_t$$

$$Y_t = 875 + 250e_t$$

which implies that

$$IS \stackrel{!}{=} LM$$

$$875 + 250e_t = 1050$$

$$\Rightarrow e^{**} = 0.7$$

$$Y^{**} = 1050$$

• Note: This implies that the exchange rate depreciates in response to government spending, which reduces (net) exports.

Elird Haxhiu ECON 402 Discussion June 3, 2022 7 / 16

- Problems with IS-LM, AS-AD, etc.
 - 1. Practical: stagflation in the 1970s ($Y_t \downarrow$ and $\pi_t \uparrow$).
 - 2. Theoretical: no microfoundations, Lucas critique, no utility functions so can't speak to normative questions.

- Problems with IS-LM, AS-AD, etc.
 - 1. Practical: stagflation in the 1970s ($Y_t \downarrow$ and $\pi_t \uparrow$).
 - 2. Theoretical: no microfoundations, Lucas critique, no utility functions so can't speak to normative questions.
- The Real Business Cycle (RBC) model...
 - Corrects these problems (somewhat).
 - Explains economic fluctuations with total factor productivity (TFP) shocks (aka shocks to technology A_t in production function).

- Problems with IS-LM, AS-AD, etc.
 - 1. Practical: stagflation in the 1970s ($Y_t \downarrow$ and $\pi_t \uparrow$).
 - 2. Theoretical: no microfoundations, Lucas critique, no utility functions so can't speak to normative questions.
- The Real Business Cycle (RBC) model...
 - Corrects these problems (somewhat).
 - Explains economic fluctuations with total factor productivity (TFP) shocks (aka shocks to technology A_t in production function).
 - Assumes competitive markets ⇒ first welfare theorem (FWT) holds ⇒ inactive policy recommendations are baked in...
 - Note: "real" means that all variables are in consumption units, so there's no role for money or nominal variables!

Some important business cycle facts:

	US data		RBC model	
\bigcirc	st dev	$\operatorname{corr}(\heartsuit, Y_t)$	st dev	$\operatorname{corr}(\heartsuit, Y_t)$
Y_t	1.7	1		
C_t	8.0	0.7		
I_t	8.2	0.9		
L_t	1.6	0.8		
A_t	-	-		

• Example: Solve the RBC model.

• Step 1: State and solve the representative household problem.

10 / 16

- Example: Solve the RBC model.
- Step 1: State and solve the representative household problem.
- Solution: The household problem is given by

$$\max_{C_0, C_1, L_0, L_1, S_1} \quad \sum_{t=1}^{2} \beta^{t-1} [\log C_t + \log(1 - L_t)]$$
s.t.
$$C_0 + S_1 = w_0 L_0$$

$$C_1 = w_1 L_1 + (1 + r) S_1$$

Elird Haxhiu ECON 402 Discussion June 3, 2022

• Solution: After deriving the lifetime budget constraint (you should be able to do this...), the Lagrangian is given by

$$\mathscr{L} = \sum_{t=1}^{2} \beta^{t-1} [\log C_t + \log(1 - L_t)] + \lambda \left[w_0 L_0 + \frac{1}{1+r} w_1 L_1 - C_0 - \frac{1}{1+r} C_1 \right]$$

 Solution: After deriving the lifetime budget constraint (you should be able to do this...), the Lagrangian is given by

$$\mathscr{L} = \sum_{t=1}^{2} \beta^{t-1} [\log C_t + \log(1 - L_t)] + \lambda \left[w_0 L_0 + \frac{1}{1+r} w_1 L_1 - C_0 - \frac{1}{1+r} C_1 \right]$$

and the first order conditions (FOCs) are

$$\mathscr{L}_{C_0}$$
 : $\frac{1}{C_0} - \lambda = 0$

Elird Haxhiu ECON 402 Discussion June 3, 2022

11 / 16

 Solution: After deriving the lifetime budget constraint (you should be able to do this...), the Lagrangian is given by

$$\mathscr{L} = \sum_{t=1}^{2} \beta^{t-1} [\log C_t + \log(1 - L_t)] + \lambda \left[w_0 L_0 + \frac{1}{1+r} w_1 L_1 - C_0 - \frac{1}{1+r} C_1 \right]$$

and the first order conditions (FOCs) are

$$\mathcal{L}_{C_0} : \frac{1}{C_0} - \lambda = 0$$

$$\mathcal{L}_{C_1} : \beta \frac{1}{C_1} + \lambda \left(-\frac{1}{1+r} \right) = 0$$

$$\mathcal{L}_{L_0} : \frac{-1}{1-L_0} + w_0 \lambda = 0$$

$$\mathcal{L}_{L_1} : \beta \frac{-1}{1-L_1} + \lambda w_1 \frac{1}{1+r} = 0$$

Elird Haxhiu ECON 402 Discussion June 3, 2022

11/16

ullet Solution: The first FOC implies that $\lambda=1/C_0$. When we substitute this into the second FOC, we get the Euler equation

$$C_1 = \beta(1+r)C_0$$

• Solution: The first FOC implies that $\lambda=1/C_0$. When we substitute this into the second FOC, we get the Euler equation

$$C_1 = \beta(1+r)C_0$$

Substituting into the last two FOCs implies that

$$L_0 = 1 - \frac{C_0}{w_0}$$

$$L_1 = 1 - \frac{\beta(1+r)C_0}{w_1}$$

• Solution: The first FOC implies that $\lambda=1/C_0$. When we substitute this into the second FOC, we get the Euler equation

$$C_1 = \beta(1+r)C_0$$

Substituting into the last two FOCs implies that

$$L_0 = 1 - \frac{C_0}{w_0}$$

$$L_1 = 1 - \frac{\beta(1+r)C_0}{w_1}$$

Combining our FOCs in this way means we can write C_1 , L_0 , and L_1 in terms of C_0 . Substituting all of these into the lifetime budget constraint gives us the solution for period 0 consumption

$$C_0^* = \frac{w_0 + \frac{1}{1+r}w_1}{2(1+\beta)}$$

Solution: Substituting this into our previous expressions gives

$$C_0^* = \frac{w_0 + \frac{1}{1+r}w_1}{2(1+\beta)}$$

$$C_1^* = \beta(1+r)\frac{w_0 + \frac{1}{1+r}w_1}{2(1+\beta)}$$

$$L_0^* = 1 - \frac{1}{w_0}\frac{w_0 + \frac{1}{1+r}w_1}{2(1+\beta)}$$

$$L_1^* = 1 - \frac{\beta(1+r)}{w_1}\frac{w_0 + \frac{1}{1+r}w_1}{2(1+\beta)}$$

while saving (or borrowing) is given by

$$S_1^* = w_0 L_0^* - C_0^*$$

Elird Haxhiu

ullet Step 2: Use the firm problem to derive expressions for wages and the rental rate of capital in terms of A_t

- Step 2: Use the firm problem to derive expressions for wages and the rental rate of capital in terms of A_t
- Solution: Recall that firms solve

$$\pi(K_t, L_t) = PF(K_t, L_t) - R_t K_t - w_t L_t$$

= $A_t K_t^{\alpha} L_t^{1-\alpha} - R_t K_t - w_t L_t$

- Step 2: Use the firm problem to derive expressions for wages and the rental rate of capital in terms of A_t
- Solution: Recall that firms solve

$$\pi(K_t, L_t) = PF(K_t, L_t) - R_t K_t - w_t L_t$$

= $A_t K_t^{\alpha} L_t^{1-\alpha} - R_t K_t - w_t L_t$

and their FOCs for optimization imply that

$$w_t = \frac{\partial}{\partial L_t} F(K_t, L_t) = (1 - \alpha) A_t K_t^{\alpha} L_t^{-\alpha} = (1 - \alpha) A_t k_t^{\alpha}$$

Elird Haxhiu ECON 402 Discussion June 3, 2022 14 / 16

- Step 2: Use the firm problem to derive expressions for wages and the rental rate of capital in terms of A_t
- Solution: Recall that firms solve

$$\pi(K_t, L_t) = PF(K_t, L_t) - R_t K_t - w_t L_t$$

= $A_t K_t^{\alpha} L_t^{1-\alpha} - R_t K_t - w_t L_t$

and their FOCs for optimization imply that

$$w_{t} = \frac{\partial}{\partial L_{t}} F(K_{t}, L_{t}) = (1 - \alpha) A_{t} K_{t}^{\alpha} L_{t}^{-\alpha} = (1 - \alpha) A_{t} K_{t}^{\alpha}$$

$$R_{t} = \frac{\partial}{\partial K_{t}} F(K_{t}, L_{t}) = \alpha A_{t} K_{t}^{\alpha - 1} L_{t}^{1 - \alpha} = \alpha A_{t} K_{t}^{\alpha - 1}$$

Elird Haxhiu ECON 402 Discussion June 3, 2022 14 / 16

• Step 3: What happens to factor prices when technology improves? What about aggregate quantities?

- Step 3: What happens to factor prices when technology improves?
 What about aggregate quantities?
- Solution: We see from step 2 that

$$\frac{\partial}{\partial A_t} w_t = (1 - \alpha) k_t^{\alpha} > 0$$

- Step 3: What happens to factor prices when technology improves?
 What about aggregate quantities?
- Solution: We see from step 2 that

$$\frac{\partial}{\partial A_t} w_t = (1 - \alpha) k_t^{\alpha} > 0$$

$$\frac{\partial}{\partial A_t} R_t = \alpha k_t^{\alpha - 1} > 0$$

so RBC implies factor prices are "pro-cyclical."

- Step 3: What happens to factor prices when technology improves?
 What about aggregate quantities?
- Solution: We see from step 2 that

$$\frac{\partial}{\partial A_t} w_t = (1 - \alpha) k_t^{\alpha} > 0$$

$$\frac{\partial}{\partial A_t} R_t = \alpha k_t^{\alpha - 1} > 0$$

so RBC implies factor prices are "pro-cyclical." Given our solutions

$$\{C_0^*, C_1^*, L_0^*, L_1^*, S_1^*\}$$

in step 1, we see that consumption is also pro-cyclical since it depends positively on wages (you should verify this...).

The effect on hours is ambiguous due to income/substitution effects.

Elird Haxhiu ECON 402 Discussion June 3, 2022 15 / 16

After "calibrating" the model (setting parameter values like β or η in a legit way), we can compute statistics *within* the model and compare them to real data. The goal is to assess how "accurate" the model is...

After "calibrating" the model (setting parameter values like β or η in a legit way), we can compute statistics *within* the model and compare them to real data. The goal is to assess how "accurate" the model is...

	US data		RBC model	
\bigcirc	st dev	$\operatorname{corr}(\heartsuit, Y_t)$	st dev	$\operatorname{corr}(\heartsuit, Y_t)$
Y_t	1.7	1	1.4	1
C_t	0.8	0.7	0.3	0.8
I_t	8.2	0.9	5.9	0.99
L_t	1.6	0.8	0.7	0.98
A_t	-	-	0.6	0.97

16 / 16