ECON 402 Exam 1 Review

Elird Haxhiu

University of Michigan haxhiu@umich.edu

February 7, 2023

1. [Continuity]

F is continuous and twice differentiable

2. [Marginal Products > 0] $MPK := \frac{\partial}{\partial K}F > 0$ and $MPL := \frac{\partial}{\partial I}F > 0$

$$MPK:=rac{\partial}{\partial K}F>0$$

$$=\frac{\partial}{\partial L}F>0$$

1. [Continuity]

F is continuous and twice differentiable

2. [Marginal Products > 0]

$$MPK := \frac{\partial}{\partial K}F > 0$$

 $MPK := \frac{\partial}{\partial K}F > 0$ and $MPL := \frac{\partial}{\partial I}F > 0$

3. [MPs diminishing]

$$\frac{\partial}{\partial K}MPK := \frac{\partial^2}{\partial K^2}F < 0$$
 and $\frac{\partial}{\partial L}MPL := \frac{\partial^2}{\partial L^2}F < 0$

$$\frac{\partial}{\partial L}MPL := \frac{\partial^2}{\partial L^2}F < 0$$

1. [Continuity]

F is continuous and twice differentiable

2. [Marginal Products
$$> 0$$
]

$$MPK := \frac{\partial}{\partial K}F > 0$$

$$MPK := \frac{\partial}{\partial K}F > 0$$
 and $MPL := \frac{\partial}{\partial L}F > 0$

$$\frac{\partial}{\partial K}MPK := \frac{\partial^2}{\partial K^2}F < 0$$
 and $\frac{\partial}{\partial L}MPL := \frac{\partial^2}{\partial L^2}F < 0$

and
$$\frac{\partial}{\partial I}MPK > 0$$

$$\frac{\partial}{\partial K}MPL > 0$$

- 1. [Continuity] F is continuous and twice differentiable $= \bigvee_{l=0}^{\infty} (A_l \bigcup_{l=0}^{l-1} A_l \bigcup_{l$

$$MPK := \frac{\partial}{\partial K}F > 0$$

and
$$\frac{\partial}{\partial L}MPL := \frac{\partial^2}{\partial L^2}F < 0$$

3. [MPs diminishing]

- $\frac{\partial}{\partial K}MPK := \frac{\partial^2}{\partial K^2}F < 0$
- and $\frac{\partial}{\partial I}MPK > 0$

- 4. [Factor Complementarity]

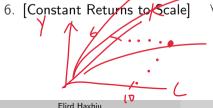
and $\frac{\partial}{\partial A}MPK > 0$

5. [Technology & Productivity]

Elird Haxhiu

1. [Continuity]

F is continuous and twice differentiable

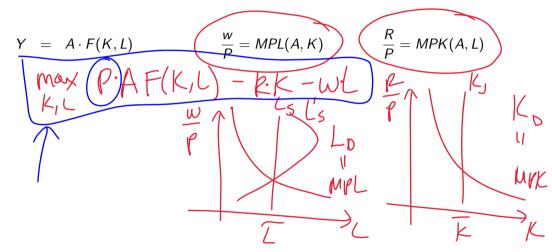

2. [Marginal Products > 0]

- $MPK := \frac{\partial}{\partial K}F > 0$ and $MPL := \frac{\partial}{\partial L}F > 0$

3. [MPs diminishing]

 $\frac{\partial}{\partial K}MPK := \frac{\partial^2}{\partial K^2} = 0$ and $\frac{\partial}{\partial L}MPL := \frac{\partial^2}{\partial L^2}F < 0$

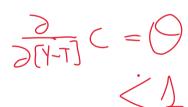
- 4. [Factor Complementarity]
- $\frac{\partial}{\partial K}MPL > 0$ $\frac{\partial}{\partial L}MPK > 0$ and $\frac{\partial}{\partial A}MPK > 0$
- 5. [Technology & Productivity]
- 6. [Constant Returns to Scale] $\forall \lambda > 0 \Rightarrow F(\lambda \cdot K, \lambda \cdot L) = \lambda \cdot F(K, L)$



3/8

4 equations, 4 endogenous (Y, C, I, r) & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ vars, 2 parameters (δ, θ)

4 equations, 4 endogenous (Y, C, I, r) & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ vars, 2 parameters (δ, θ)


Elird Haxhiu ECON 402 Exam 1 Review February 7, 2023

4 equations, 4 endogenous (Y, C, I, r) & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ vars, 2 parameters (δ, θ)

$$Y = A \cdot F(K, L)$$

$$C = C(Y - T, r)$$

$$\frac{w}{P} = MPL(A, K)$$
 $\frac{R}{P} = MPK(A, L)$ example: $C = \theta(Y - T) - r$

4 equations, 4 endogenous
$$(Y, C, I, r)$$
 & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ vars, 2 parameters (δ, θ)

$$Y = A \cdot F(K, L)$$

$$C = C(Y - T, r)$$

$$I = I(r, MPK, \delta)$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

$$MPK - \delta \cdot P_K = r \cdot P_K$$

Elird Haxhiu

ECON 402 Exam 1 Review

February 7, 2023

4 equations, 4 endogenous (Y, C, I, r) & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ vars, 2 parameters (δ, θ)

$$Y = A \cdot F(K, L)$$

$$C = C(Y - T, r)$$

$$I = I(r, MPK, \delta)$$

$$Y \stackrel{!}{=} C + I + G$$

4 equations, 4 endogenous (Y, C, I, r) & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ vars, 2 parameters (δ, θ)

$$Y = A \cdot F(K, L)$$

$$C = C(Y - T(r))$$
 example: $C = \theta(Y - T) - r$

$$I = I(r)MPK, \delta)$$
 from $P \cdot MPK - \delta \cdot P_K = r \cdot P_K$

$$Y = C + I + G$$

Aggregate (desired) investment I(r) depends negatively on r while aggregate (desired) savings

$$S(r) = Y - C - G$$

= $F(K, L) - C(F(K, L) - T, r) - G$

4 equations, 4 endogenous (Y, C, I, r) & 5 exogenous $(A, \overline{L}, \overline{K}, G, T)$ yars, 2 parameters (δ, θ)

$$Y = A \cdot F(K, L)$$

$$C = C(Y - T, r)$$

$$I = I(r, MPK, \delta)$$

$$Y = C + I + G$$

$$\frac{w}{P} = MPL(A, K)$$

example:
$$C = \theta(Y - T) - r$$

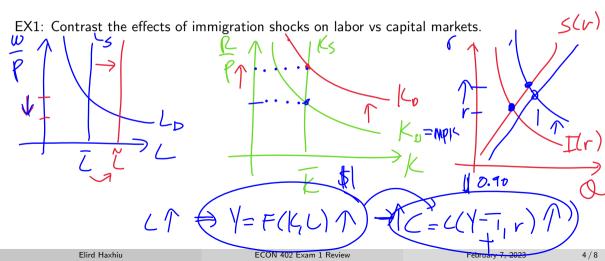
from $P \cdot MPK - \delta \cdot P_K = r \cdot P_K$

3/8

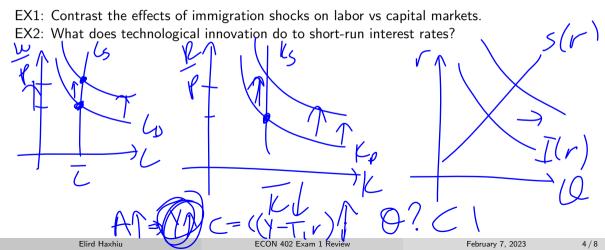
Aggregate (desired) investment I(r) depends negatively on r while aggregate (desired) savings

from

$$S(r) = Y - C - G$$


$$S(r) = F(K, L) - C(F(K, L) - T, r) - G$$

depends positively on the interest rate \Rightarrow unique solution r^* in market for loan-able funds!


Elird Haxhiu ECON 402 Exam 1 Review February 7, 2023

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

EX1: Contrast the effects of immigration shocks on labor vs capital markets.

EX2: What does technological innovation do to short-run interest rates?

EX3: How does government spending via borrowing affect availability of loan-able funds?

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

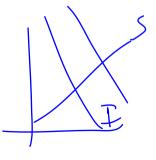
EX1: Contrast the effects of immigration shocks on labor vs capital markets.

EX2: What does technological innovation do to short-run interest rates?

EX3: How does government spending via borrowing affect availability of loan-able funds? (ν) EX4: REVIEW QUESTION GE - long answer

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

EX1: Contrast the effects of immigration shocks on labor vs capital markets.


EX2: What does technological innovation do to short-run interest rates?

EX3: How does government spending via borrowing affect availability of loan-able funds?

EX4: REVIEW QUESTION GE - long answer

EX5: What happens if half of the capital stock suddenly destroyed?

5/8

• Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$

- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Production, with labor-augmenting technology: $Y_t = K_t^{\alpha} (E_t \cdot L_t)^{1-\alpha}$ with $\alpha \in (0,1)$

- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- ullet Production, with labor-augmenting technology: $Y_t = K_t^{lpha}(E_t \cdot L_t)^{1-lpha}$ with $lpha \in (0,1)$
- Input prices: $R_t = MPK_t$ and $w_t = MPL_t$

- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Production, with labor-augmenting technology: $Y_t = K_t^{\alpha} (E_t \cdot L_t)^{1-\alpha}$ with $\alpha \in (0,1)$
- Input prices: $R_t = MPK_t$ and $w_t = MPL_t$
- Behavioral assumption about saving

•
$$I_t = s \cdot Y_t$$
 where $s \in (0,1)$ is exogenous $C_t = (1-s) \cdot Y_t$

GE:
$$\underline{T}_t = \underline{T}(r_t, MPK_t, \delta)$$

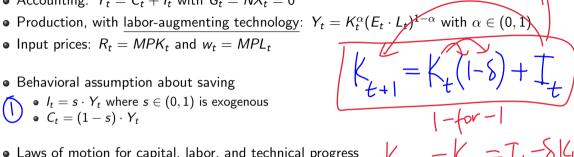
$$C_t = C(Y_t - T_t, r_t)$$

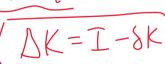
5/8

Elird Haxhiu ECON 402 Exam 1 Review February 7, 2023

• Accounting:
$$Y_t = C_t + I_t$$
 with $G_t = NX_t = 0$

Accounting.
$$T_t = C_t + T_t$$
 with $G_t = T \times T_t = 0$

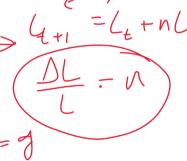

• Input prices:
$$R_t = MPK_t$$
 and $w_t = MPL_t$


Behavioral assumption about saving

•
$$I_t = s \cdot Y_t$$
 where $s \in (0,1)$ is exogenous
• $C_t = (1-s) \cdot Y_t$

• Laws of motion for capital, labor, and technical progress

$$ullet$$
 $\Delta \mathcal{K}_t = I_t - \delta \cdot \mathcal{K}_t$ where $\overline{\delta \in (0,1)}$



- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- Production, with labor-augmenting technology: $Y_t = K_t^{\alpha} (E_t \cdot L_t)^{1-\alpha}$ with $\alpha \in (0,1)$
- Input prices: $R_t = MPK_t$ and $w_t = MPL_t$
- Behavioral assumption about saving
 - $I_t = s \cdot Y_t$ where $s \in (0, 1)$ is exogenous
 - $C_t = (1-s) \cdot Y_t$
- Laws of motion for capital, labor, and technical progress

•
$$E_{t+1} = (1+g) \cdot E_t > 0$$
 for all $t = (1+g) \cdot E_t > 0$

$$\frac{\text{ical progress}}{\triangle \Box} = \bigwedge$$

- Accounting: $Y_t = C_t + I_t$ with $G_t = NX_t = 0$
- ullet Production, with labor-augmenting technology: $Y_t = K_t^{lpha}ig(\!\!E_tig)L_t)^{1-lpha}$ with $lpha \in (0,1)$
- Input prices: $R_t = MPK_t$ and $w_t = MPL_t$
- Behavioral assumption about saving
 - $I_t = s \cdot Y_t$ where $s \in (0,1)$ is exogenous
 - $C_t = (1-s) \cdot Y_t$
- Laws of motion for capital, labor, and technical progress

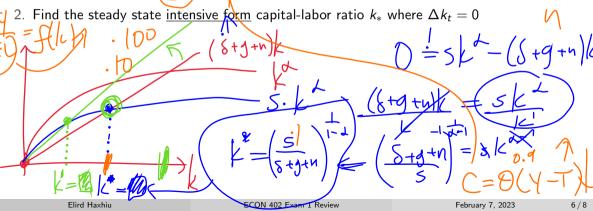
$$\Delta \mathcal{K}_t = \mathcal{I}_t - \delta \cdot \mathcal{K}_t$$
 where $\overline{\delta \in (0,1)}$

- $L_{t+1} = (1 + \eta) \cdot L_t > 0$ for all t
- $E_{t+1} = (1 + g) \cdot E_t > 0$ for all t
- Per capita quantities, intensive form $k_t = \frac{K_t}{E_t \cdot L_t}$ $y_t = \frac{Y_t}{E_t \cdot L_t}$, and $c_t = \frac{C_t}{E_t \cdot L_t}$

dhe

February 7, 2023

Golden rule with technology and population growth
$$\triangle = \boxed{-8}$$
. Allowing for technical progress $(g > 0)$ and population growth $(n > 0)$, what level of saving


maximizes consumption per capita in steady state ($\Delta k_t = 0$)?

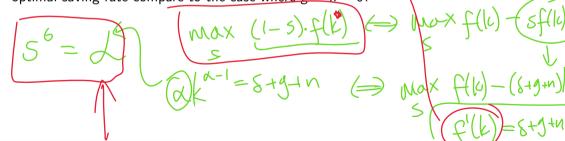
ECON 402 Exam 1 Review

$$= \frac{1}{100} \left(\frac{1}{100} + \frac{1}{100} \right) \left(\frac{1}{100} + \frac$$

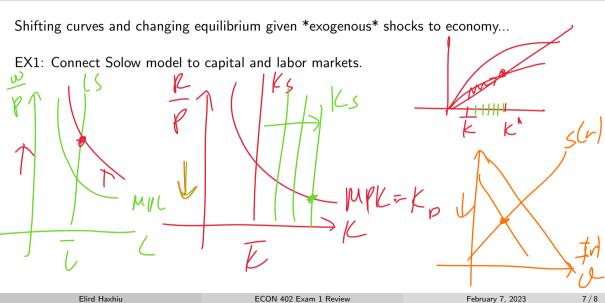
Golden rule with technology and population growth
$$(8+9+w)/(8+w)/(8$$

1. Find the law of motion for the intensive form capital-labor ratio k_t

Golden rule with technology and population growth


MPL = f(k), what level of saving

Allowing for technical progress (g > 0) and population growth (n > 0), what level of saving maximizes consumption per capita in steady state $(\Delta k_t = 0)$?


1. Find the law of motion for the intensive form capital-labor ratio k_t

Elird Haxhiu

- 2. Find the steady state intensive form capital-labor ratio k_* where $\Delta k_t = 0$
- 3. Find golden rule saving rate implied by the $MPK = \delta$ optimality condition. How does this optimal saving rate compare to the case where g = n = 0?

ECON 402 Exam 1 Review

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

EX1: Connect Solow model to capital and labor markets.

EX2: What happens during capital accumulation, or transition to steady state?

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

EX1: Connect Solow model to capital and labor markets.

EX2: What happens during capital accumulation, or transition to steady state?

EX3: What happens in a steady state with population growth?

Shifting curves and changing equilibrium given *exogenous* shocks to economy...

EX1: Connect Solow model to capital and labor markets.

EX2: What happens during capital accumulation, or transition to steady state?

EX3: What happens in a steady state with population growth?

EX4: REVIEW QUESTIONS SOLOW - long answer

Thanks for your attention!

And good luck tomorrow!