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1. Prove that OLS is unbiased under independence, and consistent under exogeneity. 
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2. Relate the statistical concepts of unbiasedness and consistency with the econometric 

concepts of selection bias (under the potential outcomes/treatment effects framework) 

and omitted variable bias (under the linear regression framework). 

 

In the previous question, we showed that the independence assumption 𝐸[𝑈|𝑋] = 0 

implies OLS is unbiased 𝐸[𝛽̂1
𝑂𝐿𝑆] = 𝛽1 while the exogeneity assumption Cov(𝑋, 𝑈) = 0 

implies OLS is consistent plim
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𝛽̂1
𝑂𝐿𝑆 = 𝛽1. In the potential outcomes framework, the 

independence assumption means that we can identify the average treatment effect 

𝐴𝑇𝐸 ≔ 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] with simple comparisons1 as there is no selection bias on 

average between treated and control units. Thus, we write  

 

𝑌1 − 𝑌0 = 𝐴𝑇𝑇 + 𝑆𝐵 = 𝐴𝑇𝐸 

 

where the first equality is always true (mean differences equal causal effect of treatment 

among the treated plus selection bias 𝑆𝐵 ≔ 𝐸[𝑌𝑖(0)|𝑋𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝑋𝑖 = 0]) and the 

second equality is only true under independence 𝑋𝑖 ⊥ 𝑌𝑖(0), 𝑌𝑖(1) which is equivalent to 

𝐸[𝑈|𝑋] = 0. In the linear regression framework, we can imagine what might happen if 

we omit an important (for determining the outcome) and relevant (for correlating with 

treatment) variable from our model. The probability limit of OLS is always given by 
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where the second equality follows from omitted variable bias (OVB) formula, with 𝛾 𝑋→𝑉 

giving the linear effect of the treatment on the omitted variable 𝑉 and 𝛿𝑉→𝑌 giving its 

effect on the outcome. The exogeneity assumption Cov(𝑋, 𝑈) = 0 rules out such omitted 

random variables which are both important and relevant, and delivers consistency! 

 

 
1 Recall that OLS is equivalent to a simple comparison (mean difference) when treatment is binary! 



3. In Stata, review interpretation of simple and multiple linear regression tables. Discuss 

functional form issues (and possibilities) with linear regression: logarithm of outcome or 

treatment, binary variables and groups, quadratic forms, interactions. 

 

4. Discuss “On Binscatter” by Cattaneo et al. (2022) as a rigorous method to visually inspect 

assumptions SLR1/MLR1, that linear regressions are actually linear! 

 

The linearity assumption requires that the conditional expectation function relating the 

outcome to the treatment be linear 𝐸[𝑌|𝑋 = 𝑥] = 𝑔(𝑥) = 𝛽0 + 𝛽1𝑥. Sometimes this 

assumption is overlooked2 in practice, but an easy check is to simply plot the data! If the 

scatterplot displays non-linear patterns, then we could either consider some 

transformations to make things linear (such as taking logarithms of skewed variables in 

our analysis or adding the square of treatment to our specification). A quite practical 

limitation of this simple and intuitive check is when the sample size is large! In these 

situations, it can be quite difficult to discern the shape of the conditional expectation 

function, so a simple solution involves making a scatter plot of the treatment vs the 

average value of the outcome within certain intervals of the treatment distribution. 

Cattaneo et al. (2022) present methods on implementing this in practice, which involves 

several important technical steps like figuring out the right way to specify the bins across 

treatment to average the outcome and creating confidence intervals properly. 

 

 
2 This is not without justification: we can show that even if 𝑔(𝑥) is non-linear, estimating slopes and an intercept 
with least squares produces the best linear predictor of the conditional expectation function. 


