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1. In the simple linear regression 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑈, what do the following quantities mean 

and how do they relate to each other, if at all: 𝑅2, 𝑡-stat on null hypothesis of zero effect, 

mean independence condition 𝐸[𝑈|𝑋] = 0. What do you really care about in all this? 

 

𝑅2 gives the fraction of the total variation in the outcome ∑(𝑌𝑖 − 𝑌)
2
 that is explained by 

our model ∑(𝑌̂𝑖 − 𝑌)
2
. This number is always between 0 and 1, and the closer the cloud 

of points is to the regression line in a scatterplot, the higher the value of 𝑅2 will be, 

indicating that the treatment predicts a greater fraction of the variation in the outcome.  

 

The t-stat on a null hypothesis of zero effect is the ratio of the OLS estimator  𝛽̂1
𝑂𝐿𝑆 to its 

standard error SE(𝛽̂1
𝑂𝐿𝑆) , or estimated standard deviation. It tells us whether the 

estimated line is not flat; if the null hypothesis of zero treatment effect were true, then 

the slope would be zero and we would get a flat line. Since we only work with a tiny 

sample of the population, we recognize that there is uncertainty in this decision, and the 

t-stat helps us quantify it. A higher value (in absolute value) indicates that our estimate 

of the slope is quite large relative to the variation we would expect from our estimator 

across many different samples, which we quantify with the estimated standard error, so 

we can be confident that the true slope in the population is not zero.  

 

Mean independence requires that the treatment not predict the average value of omitted 

variables. If this were not true, then inferring the slope of the line by looking at differences 

in outcomes across units with different levels of the treatment would be fraught with 

difficulty. A large positive value could indicate that treatment increases the outcome, or 



that treatment is associated with something else that leads to changes in the outcome 

(perhaps due to omitted relevant variables). At the end of the day, if we care about 

properly estimating causal effects, whether 𝐸[𝑈|𝑋] = 0 is true is what really matters. A 

super steep slope (indicated by a big t-stat) or a super tight fit (indicated by a big 𝑅2) is 

useless if we cannot be sure that all the correlation we documented is truly causal! 

 

2. Heteroskedasticity robust inference, always, but only if your sample is big enough! :) 
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where 𝑟̂𝑖𝑗
2  denotes the 𝑖-th residual and 𝑆𝑆𝑅𝑗 ≔ ∑ 𝑒̂𝑖𝑗

2𝑁
𝑖=1  denotes the sum of squares from  

reg 𝑋𝑗 on all 𝑋𝑘 …also known as: Huber, Eicker, White (HEW) standard errors, or 

“sandwich” standard errors if you write the formula with matrices :) 

 

3. Sensitivity analysis as one answer to intellectual nihilism implied by ubiquitous omitted 

variables lurking within the natural variation from which we wish to discern “truth” 

• Let’s discuss this sentence carefully as a group… 

• Example: how we “know” that smoking tobacco causes an increase in the 

probability of getting lung cancer (Cinelli 2020 presentation: 1:50 – 7:57) 

• Goal: learn new methods in Cinelli and Hazlet (2020), like using the observed effect 

of a control to benchmark how strong of an affect unobserved confounders would 

need to have to overturn an estimated treatment effect 

 

https://www.youtube.com/watch?v=j7mN_G5Gpyg


4. Examples to illustrate when classical measurement error matters (in the treatment, 

attenuation bias in slope estimator) and when it doesn’t (in the outcome, no bias in OLS). 

In the simple linear regression 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑈 we say the outcome is mismeasured if 

we only observe 𝑌∗ ≔ 𝑌 + 𝑒 with 𝐸[𝑒|𝑋] = 0. Derive the least squares estimator  𝑏̂1
𝑂𝐿𝑆 

when we estimate 𝑌∗ = 𝑏0 + 𝑏1𝑋 + 𝑈 instead of the true model. 
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